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Quasi-periodic events in crystal plasticity and the
self-organized avalanche oscillator
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When external stresses in a system—physical, social or virtual—are
relieved through impulsive events, it is natural to focus on the
attributes of these avalanches1,2. However, during the quiescent
periods between them3, stresses may be relieved through compe-
ting processes, such as slowly flowing water between earthquakes4

or thermally activated dislocation flow5 between plastic bursts in
crystals6–8. Such smooth responses can in turn have marked effects
on the avalanche properties9. Here we report an experimental
investigation of slowly compressed nickel microcrystals, covering
three orders of magnitude in nominal strain rate, in which we ob-
serve unconventional quasi-periodic avalanche bursts and higher
critical exponents as the strain rate is decreased. Our experiments
are faithfully reproduced by analytic and computational dislocation
avalanche modelling10,11 that we have extended to incorporate dis-
location relaxation, revealing the emergence of the self-organized
avalanche oscillator: a novel critical state exhibiting oscillatory
approaches towards a depinning critical point12. This theory sug-
gests that whenever avalanches compete with slow relaxation—in
settings ranging from crystal microplasticity to earthquakes—
dynamical quasi-periodic scale invariance ought to emerge.

Physical systems under slowly increasing stress may respond through
abrupt events. Such jumps in observable quantities are abundant, being
found in systems ranging from complex social networks to earthquakes.
Even though these avalanches appear randomly sized and randomly
placed, the statistical properties of avalanches are universal, falling into
well understood non-equilibrium universality classes. The main uni-
fying concept is the depinning of an interface under an external field.
An implicit assumption underlying this concept is that all other coexis-
ting physical processes are either too fast, and thus average out, or too
slow, rendering a static approximation valid. However, the latter as-
sumption is not always true if the slow processes rearrange the pinning
landscape at rates comparable to the external field driving rates. For as
the fast avalanches are scale-invariant, the whole time series, including
the waiting intervals between the fast events, is also scale-invariant. It is
within the waiting intervals that a slow restructuring of the pinning field
can thrive and alter universal predictions.

Although intermittent plastic flow is well known13, only recently was
it shown as being statistically akin to universal mean-field avalanche
behaviour in the quasi-static limit. Investigations of the phenomenon
have used a wide variety of techniques, including acoustic emission
from deforming ice6, high-resolution extensometry of tensile strained
copper14, and microcrystal compression tests for face-centred cubic and
body-centred cubic crystals15. However, most of these single-crystal
studies covered only a narrow range of nominal high strain rates. Pre-
liminary evidence that suggests a more complex physical picture was
discussed in ref. 16, where a rate dependence of the cumulative strain
event size distributions was observed. Interesting rate effects have also
been observed in materials with solute atoms, typically polycrystal-
line, that display the Portevin-Le Chatelier (PLC) effect17–19. The PLC

avalanche distribution exponents show no evidence of strain-rate de-
pendence (although strain dependence is shown), whereas PLC at lower
rates turns into similar-size localized slip excitations and chaotic beha-
viour20, distinctly different from the physical behaviour observed in ref.
16. Instead, the PLC avalanche behaviour is more consistent with the
phenomenology of theories of avalanches with weakening effects21. In
the experiments we report here, single nickel microcrystals of compara-
tively large dimensions, having diameters between 18 and 30mm, were
uniaxially compressed15. By controlling the applied external stress to
maintain a nominal strain rate and by detecting slip with extremely
sensitive extensometry, we track crystal displacements in time. In order
to study the rate dependence, we perform our experiments at three
different nominal strain rates (1024 s21, 1025 s21, 1026 s21). For each
sample, the time series of the displacement time derivative is filtered
using optimal Wiener filtering methods adapted for avalanche time
series22, and avalanche events are appropriately defined without using
thresholding.

As deformation proceeds in the microcrystals, the dislocation
ensemble evolves at different timescales. The most apparent activity
is associated with fast glide processes, which produce stochastic plastic
bursts. Concurrently and between these events, other less observable
processes (Fig. 1) contribute to collective slower relaxations. Like glide,
these too are thermally activated processes accessible at these high
levels of stress, but have different activation barriers: for example,
the viscoelastic response of the dislocation forests after fast avalanche
strain bursts, the localized dislocation climb motion in directions other
than the glide plane under high local stresses, and also the cross-slip
processes of dislocations shifting between glide planes. They all com-
pete to minimize the far-field stress while changing the local stress
landscape and bypassing the fast glide process. They affect dislocation
slip, but at a slower rate than avalanche glide23. In our experiments, we
classify as ‘slow relaxation’ all the deformation that does not belong to
avalanches of the scaling regime. Using this definition, the slow relax-
ation fraction increases drastically at the two slowest strain rates. Thus,
rate dependence of the avalanche size distribution (Fig. 2c) occurs
when the nominal strain-rate becomes comparable to the rate of the
slow relaxation processes (Fig. 1). Although the exact mechanisms are
unknown, one localized reorganization mechanism possible at these
large local stresses and low temperatures (0.17 times the melting tem-
perature, ,300 K)23 could be tied to newly discovered unconven-
tionally large cross-slip rates calculated for similar conditions to our
experiments24. Regardless of the possible types of relaxation mechan-
isms, we focus on the experimental fact that relaxation and driving
rates become comparable. We model phenomenologically the slow
relaxation in an intuitive manner, and then show a posteriori that
our results are independent of the particular form of relaxation
dynamics (see Supplementary Information).

The slip event sizes S, labelled by their beginning time, display a
striking dependence on the driving rate. After we smooth the time
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Figure 1 | Dislocation motion and several slow relaxation processes during
the waiting intervals between avalanches. a, Diagram of typical unit
dislocation motions. Lighter to darker indicates time evolution. Under stress, a
dislocation loop nucleates and grows until it gets pinned on its slip plane, which
is a common and fast glide-slip burst unit process. Then, a screw dislocation
segment undergoes double cross-slip to a parallel slip plane, bypassing glide
barriers. Finally, the dislocation glides and ultimately, may climb. These unit
processes underlie the dislocation ensemble dynamics (not shown). b, Strain
jump rate time series of a nickel sample at a strain rate of 1026 s21. The
avalanche phenomenon not only involves fast and violent scale-invariant

bursts24, but also long waiting times3 between glide events. During those times,
slow relaxation events happen that are typically hard to experimentally
distinguish due to the external noise levels (inset). c, Black data points show the
estimated strain percentage accumulated in slow relaxation events (generally
called ‘creep’), with the threshold set by the event size distribution (Fig. 2): this
percentage (relaxation strain/total final strain) strongly increases as the rate
decreases. Experimental noise contributes to the relaxation strain measured.
Red data points show that a non-trivial quasi-period (see Fig. 2) of avalanche
behaviour emerges and increases dramatically as the nominal rate decreases.
Error bars indicate the size of systematic variability due to thresholding.
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Figure 2 | Comparison between microplasticity experiments and theoretical
modelling. a, Average avalanche size in 400-s windows versus time for
different strain rates (decreasing top to bottom: 1024, 1025, 1026 s21,
corresponding to respective velocities of the microcrystal top surfaces of 4, 0.4,
0.04 nm s21). Time axes are rescaled by the nominal strain rate, aligning the
‘strain scales’. Quasi-periodic avalanche behaviour emerges as the nominal
strain rate decreases. The period is similar in ‘strain scale’—a key prediction of
our theory. b, Stick-slip oscillations observed experimentally in a show typical
characteristics of the model of equation (1) (using 400d-long averaging
windows). The relaxation rate is fixed (R 5 2) and the strain-rate is varied (by
modifying c: top to bottom; 1022/d, 1023/d, 1024/d), following the
experiments. The unit of strain is 2 3 1026 and the fast timescale d 5 0.5 s. We

show the actual avalanche events without the distortion that appears due to the
strain coming from slow relaxation; this difference gives the overall scale
mismatch of a and b. c, The probability distribution P(S) is shown. There is a
marked increase in the critical exponent for the size of the displacement jumps
as the strain rate decreases. The highest (1024) and lowest (1026) strain rates
are fitted to power laws S21.5f(S/S0) and S21.9f(S/S0), respectively. The key
shows strain rate and corresponding velocity for data points. d, In the model of
equation (1), the variation of the rate c shows similar behaviour to that observed
in c, with exponent drift from ,1.5 (ref. 8) to ,2.1, with fitting error ,0.2,
consistent with the discussion in the text and with fitting cut-off functional
forms f(S/S0) that are discussed in Methods.
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series over a fixed window of 400 s and then rescale the time axis to
display comparable strain evolution, very clear (Fig. 2a) oscillatory-like
behaviour emerges at the 1026 s21 rate. The emergent period displays
a strong dependence on the strain rate, while its magnitude reaches
,8 h (for 1026 s21), consistently much larger than the length we chose
for the fixed window averaging (Fig. 1c). The novel behaviour is also
reflected within statistical distributions of S: these show power-law
behaviour (P(S) / S2t) for all studied strain rates (1024 s21,
1025 s21, 1026 s21), while the value of the power law exponent t drifts
from ,1.5 (consistent with refs 7 and 25) to a higher, unexpected value
of ,2.0 for the slowest strain rate (Fig. 2c). Analogous behaviour is
observed for the avalanche durations T and their correlation with the
sizes.

Our explanation of the experimental data builds on the model
framework of dislocations moving through a disordered landscape
of forest dislocations, on a single slip plane under shear stress. This
is a successful picture for avalanches during stage I plasticity10,11,25 that
strongly relies on well-understood models of 211-dimensional inter-
face depinning12. We construct a minimal generalization via an added
relaxation term, (I):

dw(r)

dt
~ D

s(r)

m

� �n

H(s(r))

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{(I)

z
1
me

s(r){sf (r)ð ÞH s(r){sf (r)ð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{(II)

ð1Þ

Here r denotes the location on the slip plane, t is time, H is the
Heaviside step function, m is the shear modulus of the system, e= 1
is a dimensionless constant that controls the timescale separation of
the two processes (I) and (II), n is the stress exponent dependent on the
slow relaxation mechanism, s is the local applied stress and sf denotes
random stress barriers to glide slip. The basic slip variable of the system
w is the y–x component (Burgers vector along x) of the plastic distor-
tion tensor when only infinite dislocations along z on x–z slip planes
are considered10. Part (I) of equation (1) denotes the coarse-grained
relaxation of edge dislocations, with rate D at fixed temperature. Only
positive slip motion is considered to simplify our simulations, and we
have shown that our conclusions are qualitatively independent of such
assumptions (see Supplementary Information). With D we define an
effective rate of thermally activated processes that lead to slow relax-
ation. We set the exponent n 5 1 but our conclusions do not qualita-
tively depend upon it. The applied stress is the x–y component of the
stress tensor:

s(r)~sextzsint(r)zshard(r)~Mctz
ð

d2r0K r{r0ð Þw(r0){kw(r) ð2Þ

where sext is the external stress with c the stress increase rate, sint is the
dislocation local stress, shard is the local stress due to dislocation hard-
ening with k a phenomenological hardening parameter, and r9 is
defined on the slip plane.

We consider a stress-controlled test in a stationary plastic regime
(sext ; Mct)26, where M is a machine stiffness, and c has strain-rate
units. The relative timescales of the relaxation and stress rate are con-
trolled by the dimensionless parameter R ; D/c. Term (II) of equation
(1) describes the fast glide process which drives the avalanche
dynamics. Hardening is phenomenologically represented via a coef-
ficient k that controls the distance from the depinning critical point.
For clarity, we separate the relevant timescales by considering e= 1,
leading to infinitely fast avalanches compared to the slow relaxations.
Finally, sint contains the appropriate interaction kernel K for single
slip straight edge dislocations10 and sf denotes the uncorrelated local
pinning potential due to dislocation forests. We find that our main
qualitative conclusions are independent of the kernel, and thus are
equally applicable to other models of avalanches in plasticity. If we
were considering the model of ref. 11 where mixed dislocations are
included, we would modify our definitions by using a single x–y slip

plane, assume w to be the x–y tensor component, and only apply the
z–x component of the stress.

The model of equations (1) and (2) is solved by explicit integration
on a two-dimensional grid: for no relaxation (D 5 0), the avalanches
display statistics consistent with the predictions of the mean-field
theory of interface depinning2,8. As D increases, both the critical expo-
nent t for strain jump sizes S (P(S) / S2t) and the critical exponent a
for event durations T (P(T) / T2a) increase substantially. In the con-
text of mean-field theory, somewhat similar behaviour takes place
when the driving rate c is increased22, leading to avalanche overlap
and exponents decreasing below the mean-field values; we study the
case where c R 0, keeping R fixed (and .1) where the exponents
increase above their mean-field values.

The increase of the exponents is accompanied by a quasi-periodic
behaviour, with intermittent but regularly spaced large slip events
(Fig. 2b), keeping in mind that the term quasi-periodic is unrelated
to the formal definition of quasiperiodic functions. If one considers the
average avalanche size in a window, similar to the experimental study
but without strain from relaxation included, it is clear that the D 5 0
flat-in-time profile is replaced by strongly oscillating profiles in the
presence of slow relaxation (D . 0). The average avalanche size (D 5 0)
is inversely related to the hardening coefficient k, k / ,S.21. Thus,
there is a distribution of hardening coefficients being effectively
sampled, reflecting local heterogeneity. We assume that such a distri-
bution g(k9) biases the integration, over all possible hardenings k9, of the
size probability distribution of the D 5 0 model, leading to the observed
dynamically integrated size distribution. That is, a curve in Fig. 2d may
be obtained as:

Pint Sð Þ~
ð?
0

g(k0)P(S,k0)dk0 ð3Þ

For the case of interest we have Pint(S) 5 S22P(S/S0), where S0 is the
cutoff of the size distribution, yielding a higher effective size-exponent
~t ; 2 for slow strain rates. It is worth noting that in this picture, the
largest events have a non-trivial scaling behaviour (see Supplementary
Information).

The profound effects of slow rate processes within our dislocation
model and the comparison with experiments forces us to ask if our
findings are general. To make analytical progress towards an answer,
we consider the slip susceptibility r, the multiplier giving the net
number of local slips triggered by a single slip. Here, Æræ is proportional
to the hardening coefficient, Æræ / 1 2 k. In traditional mean-field
interface depinning models1, this is the ‘distance’ of the system from
the critical depinning point and is saturated to a fixed point value after
short-time transients. When r= 1, the system is far from critical,
whereas the system is near critical when r < 1. Numerical solutions
to equation (1) verify that the additional relaxation process affects r in
an unusual way. When an avalanche with size St takes place, r instan-
taneously decreases proportionally to St, whereas it increases linearly
between avalanches. We suggest that the basic physical mechanism
behind the behaviour of equation (1) (with c R 0 but R fixed) is given
by the behaviour of the slip susceptibility r, whose basic characteristics
can be described by a Markov process:

rtz1{rt:Drt~cd 1{
St

�S

� �
ð4Þ

where St is mean-field P(St) 5 NSt
23/2 exp(2St/S0); here N is a nor-

malization factor, S0 5 a/(1 2 rt)
2 (ref. 1) and the step cd can be

thought as being proportional to R. The traditional avalanche mean-
field behaviour is described by the cd R 0 fixed point (analogous to
higher experimental strain rates). The size of the avalanche at time t,
St, is a stochastic variable which mimics the avalanche dynamics of
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equation (1). When cd= 1, r increases in small steps towards the fixed
point (Fig. 3a) given by r0 5 1 2 (!pa/2�S) with average size �S (a being
the minimum accessible size).

However, there is a finite probability of a large avalanche which
takes the system far from the fixed point, with Drt large and negative.
If dS 5 St 2 �S, then Drt 5 2cddS/�S < 21 indicates the emergence of a
novel quasi-periodic behaviour (Fig. 1b) showing large negative jumps
in r with rare avalanches whose sizes St are much larger than �S. r
performs a Sisyphean task, constantly ascending towards the original
critical point r0 before the sharp descent after a large rare avalanche. In
this way, the distribution of r effectively flattens (Fig. 3b) as cd

increases (low experimental strain rates), leading to larger integrated
exponents (equation (3)). Consistently, the analogous distribution for
equation (1) flattens as R increases (Fig. 3b, inset). The rare dS events
scale with S0 / 4�S2/(pa) and qualitatively, there is a transition when
cd < ap/(4�S) < 1/(�S/a) (Fig. 3c). We call a system undergoing this
qualitative behaviour an ‘avalanche oscillator’, based on its strong
resemblance to the case of relaxation limit cycle oscillations near a
singular Hopf bifurcation with stochastic perturbations27.

Single microcrystals display a rich collection of novel mechanical
behaviours: together with size effects15 and the emergence of avalanche
slip events6,7, the importance of often-neglected slow processes on
intermittency has now come to light. The presented experiments at the
microscale now force us to reconsider our understanding of the macro-
scopic world, such as disordered solids and earthquake faults28–30. Our
general theory proposes that whenever avalanches compete with other
slow coexisting processes to minimize the local internal stress, the
dynamics will give rise to the self-organized avalanche oscillator.

METHODS SUMMARY
The experimental measurements were performed using the methodology
described earlier15,16. The data are taken at time resolutions of 5, 50 and 500 Hz
for different samples. The nominal strain rates (in s21) were 1024, 1025 and 1026,
with corresponding average platen velocities of 4, 0.4 and 0.04 nm s21, given the
dimensions of the microcrystals. The experimental time series were filtered using
Wiener filtering methods optimized for studying avalanches22. In the simulations
of equation (1), Euler time stepping is used to evolve the differential equation on an
L3 L grid. During an avalanche, the stress is not increased and the relaxation term
(I) does not participate in the evolution. During the avalanche process, we evolve
the system by using cellular automata rules: when the total local stress crosses its sf

threshold, the associated local slip w increases randomly with a normal distri-
bution of mean 1 and variance 1. The assumption of strict positivity in the local
slip is used for simulation efficiency purposes, without affecting our conclusions.
In the stress of equation (1), we have also added a term for regularizing purposes
that slightly smooths the slip profiles. It takes the form a=2Q with very small

a 5 0.05. In our simulations, we used a flat distribution ranged in (0,1] for the
quenched disorder sf(r), following a typical protocol. The kernel K(r) has a con-
tinuum Fourier representation ~K (k) 5 2Ckx

2ky
2/(kx

2 1 ky
2)2, where we set C 5 1

for clarity in our analysis. In the simulations of equation (4), the stochastic equa-
tion was solved using random variables that follow the required power-law dis-
tribution with exponential cut-off, generated with standard rejection methods.
During the numerical solution of equation (4), r can jump above 1, a regime we
do not consider (see Supplementary Information).

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Experimental. The data are taken at time resolutions 5, 50 and 500 Hz for different
samples, depending on the case. The nominal strain rates were 1024, 1025,
1026 s21 with corresponding average platen velocities of 4, 0.4 and 0.04 nm s21,
given the dimensions of the pillars. Optimal Wiener filtering corresponds to a low-
pass filter that has significant effects only at short timescales, which are plagued by
apparatus problems. In a similar fashion to ref. 24, we performed adequate tests in
order to confirm that the power-laws and the long-time quasi-periodic behaviour
were not related to the filtering procedure.
Theoretical. In the simulations of equation (1), during diffusion, Euler time
stepping is used to evolve the differential equation on a L3 L grid. During an
avalanche, given that e R 0, the stress is not increased and the relaxation term (I)
does not participate in the evolution. This approximation was performed for
clarity purposes, with qualitatively similar results with the case e 5 1. In that case,
the effect of diffusion is more visible and avalanches dissipate (for large D) a much
smaller stress percentage, since the relaxation term dominates the behaviour.
During the avalanche process, we evolve the system by using cellular automata
rules: when the total local stress crosses its sf threshold, the associated local slip w
increases randomly with a normal distribution with mean 1 and variance 1. The
assumption of strict positivity in the local slip is used for simulation efficiency
purposes, without affecting our conclusions, as we demonstrate in Supplementary
Information31. In the stress of equation (1), we have also added a term for regu-
larizing purposes that slightly smoothens the slip profiles. It takes the form a=2w
with very small a 5 0.05. We have checked for several system sizes (up to 642) that
this term does not affect our reported results in any visible manner. Also, we note
that this term is physically motivated, in as much as it is connected to the coarse-
grained form of the stress generated by dislocation pile-ups8. In our simulations we
used a flat distribution ranged in (0,1] for the quenched disorder sf(r), following a
typical protocol. The kernel K(r) has a continuum Fourier representation
~K(k) 5 2Ckx

2ky
2/(kx

2 1 ky
2)2 (ref. 10), where we set C 5 1 for clarity purposes

in our analysis. A modification of C modifies the strength of disorder required in
the model in order to observe avalanche behaviour, with no other changes. In all
simulations using equation (1) (unless explicitly mentioned otherwise) the hard-
ening coefficient k is selected from the formula k 5 2L0.85/S0 where we chose
S0 5 1,000 with S0 being approximately equal to the cut-off size of the distribution
that is derived for D 5 0. The reason for this choice has to do with the fact that the
nature of the kernel is such that a fixed local hardening coefficient k does not set
the cut-off for the size distribution. Rather, it allows for a weak increase with the
system size. However, for our purpose (studies of D . 0) it was crucial to have well
controlled critical distributions for D 5 0, independent of the system size, to
identify the concrete effects of the relaxation on the distributions. In all plots we

refer to the value of R 5 D/c. We note that all our conclusions remain qualitatively
unaltered if a strain-rate-controlled test is considered, while the only requirement
we identified for the emergence of the avalanche oscillator is the existence of a large
range of time intervals between distinct events, as self-similarity requires32. The
independence of the avalanche oscillator behaviour from the external forcing type
is in contrast to typical microscopic friction stick-slip33,34 or coarse-grained weak-
ening21,35 modelling that lead to stick-slip avalanche periodicity and typical infinite
off-critical events36. In the simulations of equation (4), the stochastic equation was
solved using random variables that follow the required power-law distribution
with exponential cut-off, generated with the standard rejection method37. While
solving equation (4) numerically, r can jump above 1, a regime that we do not
consider. There are several options to deal with the boundary condition at r 5 1
which are numerically very similar for large �S and small cd. After a jump which
takes r . 1: (1) r is reset to a random value between 0 and 1; (2) r is reset to a
specific value (for example, 0 or r0); (3) r is returned to its previous value and the
step is rejected (this method was used for the generation of Fig. 3 centre). We shall
reiterate that these crossings (r . 1) are regularization/finite-size effects and do
not define the system’s behaviour at long times and in the limit of �S/a R ‘, as we
verified in both simulations of equation (1) (showing that the distribution ‘bump’
consistently vanishes with the system size) and equation (4) (showing that differ-
ent treatments of the r 5 1 boundary lead to the same conclusion and phase
boundary cd / 1/�S). Finally, in Fig. 2, the fitting functional forms used were

c0S{te{c1(S=S0)c3 zc2

ffiffiffiffiffiffiffi
S=S0

p
where c0, c1, c2, c3 and t are fitting parameters. As it

appears from our theoretical study, the cut-off functions f(S/S0) are rate depend-
ent. For example, in Fig. 2c, we find c3 5 3/2 at 1024 rate, while it is c3 5 1 at 1026.
In Fig. 2d, c3 5 2 at the low rate, while it is c3 5 1 at the high one.
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