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ABSTRACT Regulating the stability of microtubule (MT)-kinetochore attachments is fundamental to avoiding mitotic errors and
ensuring proper chromosome segregation during cell division. Although biochemical factors involved in this process have been
identified, their mechanics still need to be better understood. Here we introduce and simulate a mechanical model of MT-kinet-
ochore interactions in which the stability of the attachment is ruled by the geometrical conformations of curling MT-protofilaments
entangled in kinetochore fibrils. The model allows us to reproduce, with good accuracy, in vitro experimental measurements of
the detachment times of yeast kinetochores fromMTs under external pulling forces. Numerical simulations suggest that geomet-
rical features of MT-protofilaments may play an important role in the switch between stable and unstable attachments.
INTRODUCTION
During mitosis, the cell equally divides into two daughter
cells, with each receiving a copy of the original genetic
material. Successful division requires that the two identical
sister chromatids of mitotic chromosomes attach to the plus-
ends of spindle microtubules (MTs) via their kinetochores
(1). This process is critical, because incorrect attachments
lead to mitotic errors that give rise to genetic instabilities,
such as are involved in cancer (2). To ensure accurate chro-
mosome segregation, correct MT-kinetochore attachments
should remain stable while faulty attachments should be de-
stabilized and corrected (3–5).

MTs are composed of a number of protofilaments (PFs),
typically 13, and polymerize by the addition of tubulin
dimers in their GTP-bound state. Growing MTs switch to
a shrinkage phase when all or most GTP-bound tubulin is
hydrolyzed, a process known as ‘‘catastrophe’’, while the
switch back to a growing state is known as ‘‘rescue’’. These
two processes constitute the dynamic instability of MTs (6).
GTP-hydrolysis also induces a change in conformation of a
MT protofilament from a straight to a curved state (7,8),
which eventually leads to depolymerization, because curved
PFs tend to peel from the MT while straight filaments
remain stable. Electron micrographs of microtubules show
that individual PFs can be seen curving outwards from the
ends (9). Mechanical measurements of the rigidity of MTs
show that their Young’s modulus is two orders-of-magni-
tude smaller than the shear modulus (10), implying that
tubulin dimers interact strongly along the PF and weakly
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along the transverse direction. All these structural, mechan-
ical, and kinetic aspects have been included in theoretical
and computational models that describe, with great accu-
racy, the main features of the stability and dynamic insta-
bility of MTs (11–15).

MT-kinetochore attachments vary in different organisms,
but all seem to share a common feature (16,17): Fibrils ex-
tending from the kinetochore either link directly to curling
MT-PFs, as in most higher eukaryotes (18,19), or fibrils
linking to a ring, known as the Dam1 complex (20,21),
form around the attached MT, as in budding yeast (22,23).
Once the attachment has been formed, MT depolymeriza-
tion (24) provides a force that is strong enough to carry
kinetochore-attached loads (20,25,26), even in the absence
of motor proteins. The precise nature of the attachment be-
tween kinetochore fibrils and MTs has been the object of
intense experimental investigation. Some investigations
have suggested that binding occurs through the Ndc80 com-
plex, which interacts with tubulin by weak electrostatic
forces (27). Other experiments show that the Ndc80 com-
plex acts like a curvature sensor and binds preferentially
to straight MT PFs, typical of polymerizing MTs (28). How-
ever, electron micrographs exist that vividly show kineto-
chore fibrils directly connecting to the tips of curling
PFs (16).

In a recent article, Akiyoshi et al. (29) have shown that
yeast kinetochores form ‘‘catch-bonds’’ with MTs. Catch-
bonds become stronger under a pulling force (30,31), thus
providing the possible stabilizing mechanism needed for
chromosome segregation. Akiyoshi et al. also show that
the kinetochore forms catch-bonds only with depolymeriz-
ing MTs, although it forms standard force-weakening bonds
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with polymerizing MTs (29). The authors gather this infor-
mation into a simple two-state kinetic model that is able to
fit well the experimentally measured detachment times (29).
The physical mechanism by which a catch-bond forms,
however, remains unclear. It is easy to understand that elec-
trostatic interactions alone, even if protein complexes act
cooperatively (27,32), would not give rise to a catch-bond:
pulling charges apart leads to a weakening of the bond
and should therefore increase the detachment rate. Thus
electrostatic interactions reasonably account for the experi-
mentally observed increase of detachment rate for polymer-
izing MTs under tension, but cannot explain at the same
time the decreasing detachment rate observed for depolyme-
rizing MTs.

Models of MT-kinetochore interactions are abundant,
ranging from the classical sleeve model (33,34) to curling
models (35–37), and syntheses of both (38,39), as well as
incorporation of motor proteins (40), but none of them pro-
vide insight into the observed catch-bond behavior. In this
article, we resolve this puzzle by combining existing exper-
imental evidence into a model of MT-kinetochore attach-
ment that can explain the formation of catch-bonds. We
consider the interaction of a microtubule with a set of kinet-
ochore fibrils with tips that can directly bind to straight MT-
protofilaments and to neighbor fibril tips as suggested in
Ciferri et al. (27) for the Ndc80 complex.

Similarly, the fibrils can be effectively cross-linked by
other protein complexes such as, e.g., the Dam1 complex
in budding yeast or the Mis12 complex in PtK1 cells (18).
Hence, when a polymerizing MT approaches the kineto-
chore, fibrils attach to its surface because of their direct
interaction. This attachment is a standard force-weakening
bond as expected, but the mutual interactions or cross-link-
ing between fibrils naturally leads to the formation of fibril
loops. When MTs depolymerize, the direct fibril-MT bind-
ing force is strongly suppressed (28), although the tips of
curling PFs can still easily entangle in the fibril loops.
This attachment is now a catch-bond, because it becomes
stronger under tension. The mechanism we propose is
very general and could involve other kinetochore proteins,
such as CENP-E (41), CENP-T (42), and CENP-F (16), or
the Ska complex (43), rather than just Ndc80, which is too
short to account for the fibrils alone. The entangled organi-
zation of the fibrils observed in vertebrate kinetochores (18)
provides another striking example where a velcrolike attach-
ment, such as the one we propose, could naturally take
place.

We illustrate the formation of a conformational attach-
ment by three-dimensional simulations of a single depoly-
merizing MT interacting with a set of kinetochore fibrils.
Once we are confident that a conformational attachment is
formed, we can reduce the computational complexity of
the problem by focusing on a two-dimensional representa-
tion of the interaction between a PF and a fibril loop.
Numerical results of the two-dimensional model reproduce
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with good accuracy the catch-bond behavior reported exper-
imentally in Akiyoshi et al. (29). We also study the stability
of the MT attachment and find that it crucially depends on
the local conformation of the MT. By changing the intrinsic
curvature of the MT-PF, the attachment is destabilized and
the catch-bond disappears. Our results suggest that the
experimentally observed tension-induced stabilization of
MT-kinetochore attachments could be explained by a
conformational mechanism, although chemical affinities be-
tween MTs and kinetochore proteins may also play a role.
MATERIALS AND METHODS

Three-dimensional model of MT-kinetochore
interactions

We construct a three-dimensional model of a MT starting from a set of

wedge-shaped building blocks representing tubulin dimers, as originally

suggested in Hunyadi et al. (44). A model similar in spirit to ours has

been used in Cheng et al. (45) and Cheng and Stevens (46) to simulate

MT self-assembly. In our model, each block is composed by eight nodes

connected by stiff elastic springs, ensuring that the block behaves as a rigid

object, as illustrated in Fig. 1 a. Diagonal springs prevent shearing and

twisting of the block, while springs between nearest-neighboring nodes

heavily penalize elongation and compression. The rest-length and stiffness

of the springs are given in Table 1. By suitably tuning the geometrical fea-

tures of the tubulin block, we can induce the desired conformation of the

PFs and of the MT.

PFs are formed by arranging the blocks linearly—so that nodes 1, 2, 5,

and 6 face nodes 3, 4, 7, and 8—and connecting the nodes by elastic springs

with rest-length d10 and stiffness k10, as shown in Fig. 1 b. When the rest-

length of the springs on the top face (i.e., d4) is equal to the rest-length of the

springs on the bottom face (d3), the PF is straight (top, Fig. 1 b), simulating

the GTP-bound state. By changing d3 so that d4 < d3, we can induce an

intrinsic curvature in the PF, simulating hydrolysis into the GDP-bound

state (as shown in Fig. 1 b).

The MT is generated by laterally aligning N PFs and connecting the

blocks via springs, with rest-length d11 and stiffness k11, to form a sheet

(as shown in Fig. 1 c). A tubular structure is obtained by imposing the con-

dition that the top and bottom faces of the blocks have a trapezoidal shape

(as shown Fig. 1 a). In this condition, the PF sheet naturally folds into a cyl-

inder, as shown in Fig. 1 c. We tune the geometrical parameters of the

wedge so that a tubulin sheet consisting of N z 11–15 PFs will close

into itself (see Table 1). A smaller number of PFs will not yield MT closure,

while a larger number of PFs produces an overlapping structure. The helic-

ity of the MT lattice is achieved by shifting the alignment of the blocks by S

blocks at every turn. Although the most common case is N ¼ 13 and S ¼ 3

(44), here we considerN¼ 13 and S¼ 2. When the MT closes up, we clamp

one end of the MT and hydrolyze or add tubulin units at the other end.

The flexural rigidity B of individual PFs in the model can be estimated

from the theory of elasticity as the product of the area moment of inertia

I and the elastic modulus E: B ¼ EI. The area moment of inertia of a rod

with a trapezoidal cross-section of height h z d5 ¼ 2.5 nm and top and

base lengths of d2 ¼ 4.55 nm and d1 ¼ 3.5 nm is I ¼ d5((d2 þ d1)/2)
3/

12 z 20 nm4, for bending around the median line. (Values correspond to

those in Mickey and Howard (47) and VanBuren et al. (14), when we

consider that the total width and length of a tubulin unit is enhanced by

the connecting springs, d10 and d11, respectively.) The elastic modulus is

directly related to the stiffness of the springs by EA ¼ 4k10d10, where the

factor 4 comes from the fact that we split the tension between two blocks

into four parallel springs, and A is the cross-section of the block. We chose

k10 so that B is in the range of 1.5–50 � 10�26 Nm2, which is in agreement

with earlier estimates based on measurements of the bending stiffness of



FIGURE 1 Three-dimensional tubulin block

model of the MT. (a) A tubulin block consists of

eight nodes connected to neighboring nodes via

stiff linear springs. Diagonal struts are added to

avoid shearing and twisting. Each node is also en-

dowed with a hard-core repelling potential. The top

and bottom faces of the blocks are of trapezoidal

shape to induce lateral curvature in the MT. (b) A

PF is obtained by arranging tubulin blocks along

a line and connecting them with springs. PFs can

be straight or bent, depending on the ratio of top/

bottom lengths of the block. (c) A sheet of tubulin

blocks will form a tubular structure when the

opposing sides of the block are trapezoidal. In

this case we have d2 > d1 and d3 ¼ d4, correspond-

ing to a GTP-bound MT. The sheet will fold with a

helicity depending on the number of transversal

units and the ratio d2/d1. (d) Clamping one end of

the MT while hydrolyzing the blocks by letting

d3 > d4 and allowing transversal bonds to break

leads to the ram’s-horn shape typical of depolyme-

rizing MTs. To see this figure in color, go online.
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MTs (14). Other estimates of the linear angular-spring stiffness of PFs yield

slightly different values (48).

Finally, the particles composing the block are endowed with a hard-core

repulsion potential (for numerical purposes, the repulsive part of a Lennard-

Jones potential) with cutoff rhc ¼ 5 nm to avoid interpenetration of blocks.

Longitudinal and transversal bond-lengths (d10 and d11, respectively) are

chosen smaller than the hard-core cutoff to avoid bond-deformation other

than stretching. By allowing for bonds breaking and attachment, we can

simulate polymerization and depolymerization processes. The model is im-
TABLE 1 Parameters employed in three-dimensional simulations

Rest-length and stiffness of intra/intertubulin block springs

Edge Symbol Rest-length [nm] S

Intrablock d1 3.5

d2 3.5–4.5

d3 5.25–6.3

d4 5.25

d5 2.5

Interblock d10 1.75 k10
d11 1.75

Constants used to describe kinetochore fibrils as bead-spring polymers

Constant Symbol V

Stiffness kf 106

Bead size rb 2

Maximal fibril length l0 20–

Density rf 0.77–3.8 �
Lennard-Jones parameters for interactions of fibril tips

Interaction E [pN/nm] s [nm]

Fibril-tip/fibril-tip 100–2000 2.5

Fibril-tip/straight PF 1.5–5.00 7.5

Fibril-tip/curved PF 500 7.5
plemented and simulated using the LAMMPS software package (LAMMPS

Molecular Dynamics Simulator, http://lammps.sandia.gov/) (49).
Kinetochore-MT interface

We model the kinetochore-MT interface as an assembly of fibrils (16,17),

which represent various candidate proteins and complexes (e.g., Ndc80,

CENP-E, CENP-T, CENP-F) linked, e.g., by the Mis12 complex (18), the
tiffness [pN/nm] Notes

k ¼ 5 � 106 Incompressible blocks

k

k

k

k

¼ (1.5–50) � 105 Calculation based on VanBuren et al. (14)

and Mickey and Howard (47)k11 ¼ 50–1000

alue Notes

pN/nm Taken to be inextensible

nm Thin compared to PFs

50 nm Estimated from McIntosh et al. (16,36)

10�3 fibrils/nm2 Estimate, Lawrimore et al. (50)

r* [nm] Notes

3.75 Assumption: strong attraction

30 Assumption: weak attraction

7.5 Assumption: repulsion
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Ska complex (43) or the Dam1 complex (20,21). Here the different proteins

at the kinetochore-microtubule interface are treated on equal footing—

coarse-grained into fibrils—and are modeled as bead-spring polymers of

length l0 ¼ 20–50 nm (16,36). We consider hard-core repelling beads of

radius rb ¼ 2 nm connected by linear springs of rest-length 2rb and stiffness

kf ¼ 106 pN/nm, which makes them practically inextensible. We also as-

sume that fibrils have vanishing bending stiffness compared to the MTs.

Kinetochore fibril bases are arranged randomly on a wide area with a

density of rf ¼ 0.77–3.8 � 10�3 fibrils/nm2 and then extended toward

the incident MT-tip. In practice, these densities correspond to 10–50 fibrils

per MT. The density was chosen based on the estimate of twenty Ndc80

complexes per captured MT (50). A summary of fibril parameters is re-

ported in Table 1.

Fibril tips can bind either to tubulin blocks in a straight conformation or

to other fibril tips. In our model, curling tubulin blocks cannot directly bind

to fibrils, in agreement with experiments showing that the Ndc80 tip binds

preferentially with straight tubulin conformations (28). This choice is made

to illustrate the worst-case scenario, but it is expected that a weak attraction

with curved tubulin filaments, possibly relevant for other protein complexes

(e.g., CENP-E, CENP-T, Ska, CENP-F), would not change the results.

Hence, an incident MT can attach to kinetochore fibrils either directly by

binding to straight tubulin units or by locking curling PFs into fibril loops

as shown in Fig. 2 b). In all cases, binding is implemented by a Lennard-

Jones potential

VLJðrÞ ¼ 4e

��s
r

�12

�
�s
r

�6
�
r<r�; (1)

where r* is a cutoff, e is the binding strength, and s controls the width of the

potential well. Note that fibrils in our model represent coarse-grained pro-
tein complexes so that their mutual interactions may reflect collective prop-

erties. Interaction with GDP-bound tubulin is modeled as a repulsive

potential by setting r* ¼ s. The parameters chosen for s and r* are chosen

so that interpenetration between fibrils and blocks can be avoided (these

parameters are reported in Table 1). Movie S1 in the Supporting Material

illustrates the mechanism described here. It shows the result of a simulation

where a straight MT enters a bundle of kinetochore filaments and binds

some of them on its outer surface. When the MT protofilaments begin to

curl and peel off the MT, some become entangled in loops formed by the

kinetochore fibrils.
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Simplified two-dimensional model
of MT-protofilament elasticity

The three-dimensional model of the MT and the MT-kinetochore interface

is highly complex and difficult to simulate for long times due to the stiffness

of the bonds. Therefore, only limited results can be obtained by the full

three-dimensional model. To obtain relevant statistics for the detachment

kinetics, we need to perform some important approximation reducing the

problem to two dimensions. Fig. 2 d suggests a way in which such a dimen-

sional reduction might take place. The protofilament is modeled as a flex-

ible chain of nodes connected via springs (15) with longitudinal stiffness

k ¼ 15,000 pN/nm and rest-length a ¼ 10 nm (approximately one tubulin

dimer). Because the fibrils form loops around the PF tip, the only way to

detach, except for the dissociation of the fibril loop, is by sliding the loop

off the PF ram’s horn. In two dimensions, this process is illustrated in

Fig. 2 d, where the cross-section of the fibrils is modeled as an elastic ball.

Here, we model the kinetics of a single protofilament attached to a sub-

strate representing the interaction with neighboring protofilaments (13,15).

The chain furthermore has an intrinsic bending angle of 4 (17) and bending

stiffness B. Hence, the elastic energy of a protofilament with node coordi-

nates ri is given by (15)

Eel;PF ¼
X
i

1=2kðjriþ1 � rij � aÞ2 � B
�
a cosðqi � 4Þ

þ Hðrc � yiÞ1=2Syi; (2)

where H(x) is the Heaviside step-function and the qi values are the angles

between neighboring subunits. Hence, the elastic force on each node i is
simply

f iel;PF ¼ �vEel;PF

.
vri:

As in the three-dimensional model, we estimate the bending stiffness of

the PF from the flexural rigidity of a microtubule EIMT z 10 � 10�24 Nm2

(see VanBuren et al. (14) and references therein) and its second moment of

inertia IMT z 2� 10�32 m4 (47). Although the protofilament is modeled as

a one-dimensional object, we estimate its model of inertia treating it as a

cylinder of radius b ¼ 5 nm, which yields IPF z 10�34 m4. By simple
FIGURE 2 Summary of the model for the kinet-

ochore-MT interface. (a) The fully hydrolyzed PFs

of the MT curl, forming ram’s horns, locking into

loops formed by the kinetochore fibrils. (b) Genesis

of a loop by fibrils attaching to the not-yet-hydro-

lyzed tubulin block, and locking into each other.

When the tubulin blocks are hydrolyzed, the curl-

ing links the PF tip into the fibrils loop. (c and d)

Side-view of a PF tip with kinetochore-fibril loops

around it and its two-dimensional reduction. To see

this figure in color, go online.
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calculation we can then estimate B¼ (EIMT/IMT)IPFz 5� 10�26 Nm2. The

interaction between the filament and the substrate is modeled by a spring

with stiffness S ¼ 1000 pN/nm, which breaks when it is extended beyond

rc ¼ 1 nm. These parameters (S and rc) were fitted to the requirement

that depolymerizing MTs shrink at the experimentally observed speed,

keeping a finite curvature at the tip to capture the fibrils. In fact, as shown

in Zapperi and Mahadevan (15), only the combination Sr2c rules the PF

dynamics.
Two-dimensional simulations of fibril-MT
interactions

As shown in Fig. 2 d we consider only the cross section of the fibril bundle

(Fig. 2 c) and model it as a closed chain of six nodes connected by linear

and angular springs with extension b, stretching stiffness kf, and bending

stiffness Bf. The elastic energy of the chain can then be written in a form

equivalent to Eq. 2.

The interaction between the PF and the fibril is modeled by a repulsive

potential in case of a depolymerizing MT and by an attractive force for a

polymerizing MT: The repulsive force between each node of the depolyme-

rizing PF ri and the fibril Rj according to

f ijint ¼ �A
exp

��0:1rij
�

r3ij
rij;

where rij ¼ ri – Rj and rij ¼ jrijj. The attractive interaction with polymer-

izing PF is modeled according to Eq. 1.
TABLE 2 List of constants used in two-dimensional

simulations

Name Symbol Values used Comment

MT-protofilament

Subunit length a 10�8 m Length scale

Drag coefficient gPF 10�9 kg/s Estimate

Bending stiffness B 5 � 10�26 Nm2 Calculation
Numerical simulations of fibril-protofilament
dynamics

The dynamics of the PF-fibril system is governed by the following coupled

Langevin equations:

gPF

dri
dt

¼ f iel;PF þ f ijint; (3a)

dRj j ij
Stretching

stiffness

k 1.5 � 10�24 N/m Assumption

Substrate

stiffness

S 1.0 � 10�26 N/m Fit

Breaking length rc 1 nm Fit

Bending angle 4 0.18–0.42 McIntosh et al. (17)

Growth velocity v0g 0.008–0.21 mm/s Akiyoshi et al. (29),

Rusan et al. (52), and

Tirnauer et al. (53)

Shrinking v0s 0.2–0.3 mm/s Akiyoshi et al. (29)
gf dt
¼ fel;f � f int þ FþGj: (3b)

Here, gPF and gf are the damping coefficients of the nodes of the PF and the

fibril, respectively, and F ¼ Fbx is an externally applied pulling force, acting
along the horizontal direction. The thermal noise Gj acting on the fibril is a

Gaussian random force with average hGj(t)i ¼ 0 and correlations	
GjðtÞGkðt0Þ


 ¼ 2gf kBTdijdðt � t0Þ;
where T is the temperature and kB is Boltzmann constant. In the following,

we quantify the amplitude of thermal fluctuations by the parameter
 velocity and Rusan et al. (52)

Growth

acceleration

Fg 20 pN Akiyoshi et al. (29)

Shrinking stall Fs 7 pN Akiyoshi et al. (29)

Rescue rate 1/pres 0.045/s Rusan et al. (52)

Catastrophe rate 1/pcat 0.058/s Rusan et al. (52)

Kinetochore fibril

Segment length b 10�9 m Assumption

Drag coefficient gf 10�10 kg/s Estimate

Bending stiffness Bf 5 � 10�27 Nm2 Assumption

Stretching

stiffness

kf 10�25 N/m Assumption

Fluctuation

amplitude

u 15–35 nm ms�1/2 Tried values
uh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=gf

q
.

The damping coefficient can be evaluated considering that the drag

coefficient of a sphere of radius r immersed in a fluid with dynamical vis-

cosity h is given by the Stokes formula g ¼ 6phr. The dynamical viscosity

of water at T z 300 K is h z 10�3 Pa s. Assuming that the radii of the

fibril and PF are rf ¼ 1 nm and rPF ¼ 10 nm, we get gf z 10�10 kg/s

and gPF z 10�9 kg/s. In these conditions, the thermal fluctuations of the

PF are overshadowed by the interactions with the strongly fluctuating fibrils

and can be safely dropped. This is particularly convenient because it further

speeds up the simulations.

The MT shrinks or grows by adding or removing tubulin subunits from

the tip, but in mammalian cells, MTs also depolymerize at the spindle poles

that are associated with poleward flux of tubulin (51). Here, we consider

that the PF is able to polymerize (attach subunits at the tip) or depolymerize
(lose subunits from the tip) and switch between these states. The growing/

shrinking velocities and switching rates we use are taken from experiments

in the literature (29,52,53). We assume that the velocities are dependent on

the force on the tip of the protofilament (29) according to

vg=sðFÞ ¼ v0g=s � 105F=Fg=s: (4)

Equations 3a and 3b are solved by a fourth-order Runge-Kutta algorithm for

the PF and an Euler-Maruyama algorithm for the fibril. Due to numerical

constraints, it is not possible to simulate the model over a timescale that

is comparable to the experimental one. We thus artificially increase the

noise fluctuations and then analyze how the results depend on u. In this

way, we are able to show that the numerical results approach the experi-

mental ones because u tends toward realistic values. The numerical values

of the constants used in the simulations are summarized in Table 2.
RESULTS

Microtubule protofilaments entangle with
kinetochore fibrils

We simulate the three-dimensional kinetochore-MT inter-
face model presented and discussed in Materials and
Methods. In Fig. 2 a, we show an MT whose curling PFs
are partly linked into loops formed by kinetochore fibrils.
In Fig. 2 b and Movie S2 we illustrate the process by which
a curved PF locks into a loop formed by kinetochore fibrils.
Biophysical Journal 107(2) 289–300
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A polymerizing PF, composed by straight tubulin blocks,
reaches into the entangled kinetochore outer plate and fibrils
attach to the tubulin blocks (see Fig. 2 b, left). Because fibril
tips are now close together, they can easily bind with each
other (as suggested in Ciferri et al. (27) and Zaytsev et al.
(32)). When the PF depolymerizes and starts to curl, fibrils
detach from the tubulin due to the reduced affinity, but the
ram’s horn of the PF can lock mechanically into the loop
formed by the connected fibrils (see Fig. 2 b, right).

To test the fidelity of our kinetochore-microtubule inter-
face model, we perform a series of simulations to see how
many PFs are entangled in the fibril loops. The MT-tip
was kept straight and moved into the mass of kinetochore
fibrils with a velocity of 1 mm/min (53). Fibrils attach to
the MT surface and bind to each other, especially when
they are in proximity of the MT, thus forming loops. As
soon as the tip of the longest PF reaches the area of the fibril
bases, the incident velocity is set to zero, and the MT is set
to depolymerize immediately. In this process, curling PFs
can hook into the fibril loops. We perform this simulation
for various fibril densities and average >30 realizations in
each case. We report the number of entangled PFs as a his-
togram in Fig. 3 for 10, 20, and 50 fibrils per MT, or 0.77,
1.5, and 3.8 fibrils per PF. The average number of entangled
PFs is 1.1, 4.5, and 5.2 for 10, 20, and 50 fibrils, respec-
tively. Hence, even for a relatively small number of fibrils,
there is significant and robust entanglement.

The geometrical conformations of the PF tips broadly
correspond to the two distinct states of the dynamic MT—
a growing/polymerizing (straight) and a shrinking/depoly-
merizing (curved) state, with differing chemistry and phys-
ics of the molecules at the tip. In the growing state, the tip of
the MT recruits phosphorylyzed GTP-tubulin subunits,
while the tubulin subunits in the rest of the MT body are pro-
gressively hydrolyzed. The main difference (for our pur-
poses) between GTP and GDP-tubulin is the equilibrium
angle between two connected subunits. Although a filament
made out of GTP units tends to remain straight, a GDP-
FIGURE 3 Histogram of the number of entangled PFs interacting with a

set of kinetochore fibrils for three different densities. The total number of

simulations is 30 in all cases. For details, see text. To see this figure in color,

go online.
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tubulin filament has a curved equilibrium configuration
(see Fig. 1 b). As a consequence, the tips of PFs in a growing
MT will tend to have rather straight configurations whereas
in the depolymerizing phase, the PFs of the MT form hooks
(ram’s horns) while losing tubulin subunits.

To estimate the load-carrying capacity of the MT-kineto-
chore interface, we consider only the tip of the PFs and as-
sume that the constituting tubulin blocks are uniformly
either hydrolyzed (GDP-bound) or phosphorylated (GTP-
bound). In this way, we can discuss detachment from depo-
lymerizing or polymerizing PFs separately and distinguish
the underlying detachment mechanisms. In particular, a sin-
gle PF is first inserted up to a few blocks, typically ranging
from one to three, into a network of kinetochore fibrils and
the system is then relaxed for 10 s. Because we always start
from a GTP-tubulin PF, the tips of some fibrils bind to the
outer side of the tubulin blocks (particles with 1–4; see
Fig. 1 a). When the system is equilibrated, the distal end
of the PF is held fixed, while the kinetochore plate, to which
fibrils are attached, is moved with constant velocity
v ¼10 nm/s. In these conditions, we measure the longitudi-
nal component (parallel to the pulling direction) of the inter-
action force between kinetochore and the PF.

For GTP-tubulin PFs, we plot the force-displacement
curves in Fig. 4 a for three values of the binding strength
e(P-F) between fibrils and PFs. The fibril tips are, in this
case, attached only to the first tubulin block of the PF
(shown in the inset). The curves show the displacement
dy, the difference between the starting and end positions
of the kinetochore plate as a function of the in-line compo-
nent of the interaction force, normalized to the number of
attached fibrils. Simulations are repeated 30 times to
average out the effect of thermal noise. The results show
that at short displacements, the kinetochore plate feels no
restoring force because the fibrils are unwrapped, i.e.,
straightened. At this point, attached fibrils finally exert a
force on the plate due to the binding with the tubulin dimer,
until the bond breaks. The detachment from a GTP-tubulin
PF, therefore, relies solely on the attractive interaction be-
tween kinetochore fibrils and tubulin blocks. The process
is illustrated in Movie S3.

When the PF is formed of GDP-tubulin, its end is curved
and the fibril-tubulin interaction is turned into a purely
repulsive potential. We perform the same simulation as
detailed for the GTP-tubulin PF above. The difference is
that the PF is inserted more than one tubulin block into
the fibril network, typically two-to-four blocks, and the
relaxation also entails the curling of the PF. We performed
simulations for two values of the flexural rigidity and plot
the results in Fig. 4 b (see also Movie S4). For the larger
value of the stiffness, we observe pronounced oscillations
of the force-displacement curve due to the sliding of the
kinetochore fibrils on the tubulin blocks while uncurling.
For the less stiff case, the oscillations are not clearly
discernible and the detachment of the kinetochore-MT



FIGURE 4 Detachment mechanisms of the

kinetochore-PF interface. (a) Force-displacement

curve of a straight PF-kinetochore fibrils interface.

The fibrils are attached to the first tubulin block of

the PF because the fibril tips interact with the PF

via a Lennard-Jones potential with strength

e(F-P). Displacing the fibril ends leads at first to

no increase of the force as long as the fibril un-

wraps. Upon completion of this straightening pro-

cess, the force increases rapidly as the fibrils and

the PF stretch while overcoming Lennard-Jones

attraction. (b) Force-displacement curve of a

GDP-tubulin PF in the curved conformation.

Again, the kinetochore fibrils are pulled with con-

stant velocity and the in-line component of the

interaction force is plotted for flexural rigidity

B ¼ 5 � 104 pN nm2 and B ¼ 1.5 � 104 pN

nm2. The interaction energy between the fibrils is

modeled by a Lennard-Jones potential with

e(F-F) ¼ 500 pN nm or e(F-F) ¼ 100 pN nm. In

the first case, the peak corresponds to the bending

of the PF and in the second case, to the breakdown of the fibril loop. The oscillation (black curve) is due to the discrete nature of the PF and arises from the

sliding of the kinetochore fibrils from one block to the next. This oscillation is drowned out by noise when the flexural rigidity is reduced (as shown in the red

curve). To see this figure in color, go online.

Stability of Microtubule-Kinetochore Attachments 295
interface is much smoother. As shown in Fig. 4 b, the peak
load of a single depolymerizing PF is >10 pN, suggesting
that a MT can, on average, carry a peak load of up to
50 pN, which compares nicely with experimental results
(26). We also test the effect of the binding interactions be-
tween fibrils e(F-F). For e(F-F) ¼ 100 pN nm and B ¼
1.5 � 104 pN nm2, the fibril loop eventually breaks (see
Movie S5) but it is still able to carry a load of 20 pN. Hence
for e(F-F)¼ 100 pN nm and B¼ 1.5� 104 pN nm2, the fibril
loop should be strong enough to sustain a load of 20 pN, as
we verified numerically.

A feature of the detachment not captured in the MD sim-
ulations is the thermally induced/assisted detachment that is
prevalent at low forces. The reason is that thermal phenom-
ena in a system such as ours appears on timescales much
larger than we are able to simulate in three dimensions.
To be able to simulate on statistically relevant timescales,
we developed and implemented a two-dimensional equiva-
lent of the kinetochore-MT interface, as already discussed
in a previous section.
Shrinking microtubules form catch-bonds with
kinetochore fibrils due to their conformation

For a shrinking PF, we assume that the fibrils do not attract to
the tubulin molecules that are in curved conformation (28)
but interact via a solely repulsive potential, as discussed in
the Materials and Methods. To relate the experiments of
Akiyoshi et al. (29) with the two-dimensional model, we
chose an intrinsic bending angle of 4 ¼ 0.36, corresponding
approximately to the peak of the curvature distribution
measured experimentally inMcIntosh et al. (17) and Alushin
et al. (28). All the model parameters are reported in Table 2.
As described in the previous section, detachments can
occur either because of thermal and other nonequilibrium
fluctuations that lead the fibril to jump off the PF tip, or
because a sufficiently strong pulling force mechanically
bends the PF. In agreement with Akiyoshi et al. (29), low
pulling forces increasingly stabilize the PF-fibril attach-
ment. Furthermore, our model predicts that for larger forces,
the attachment should again be destabilized. To compare the
model with experiments, we plot in Fig. 5 a the numerical
and experimental data for the detachment rate, denoted k4
as in Akiyoshi et al. (29). The numerical data is plotted
for various values of the fluctuation parameter u. At small
forces, the detachment rates is well fitted by exponential
decay, k4 ¼ k4

0exp(�F/F4). The parameter F4 follows an
exponential curve as a function of u, as shown in Fig. 5 b.
From this plot we can extrapolate the value of u in the
experiment for our model and arrive at u z 1 nm ms�1/2,
which is a realistic and physical fluctuation parameter for
this system. Hence, at low forces, simulations and experi-
ments fit neatly together.

It is, however, unlikely that bond strengthening persists
up to larger forces, where elastic deformation of the PF
should take place. Indeed, simulations for large forces
show that the lifetime of the kinetochore-microtubule
attachment—the inverse of k4—displays a peak at ~10 pN,
and decreases very quickly after that, as shown in Fig. 5 c.
The detachment times can be very well fitted at low forces
and around the peak with a Weibull function

1=k4ðFÞ ¼ t0 þ A0

k

l

�
F

l

k�1

e�ðF=lÞk ; (5)

where t0 is the lifetime at zero force, A0 is the amplitude,
and the Weibull parameters, l and k, both depend on a
Biophysical Journal 107(2) 289–300



FIGURE 5 Simulation of the catch-bond

behavior for depolymerizing PFs. (a) The detach-

ment rate as a function of the pulling force for

different values of the diffusion parameter u for

the two-dimensional model of a depolymerizing

PF together with the experimental data from

Akiyoshi et al. (29). (b) Extrapolation of the diffu-

sion parameter u in the experiments from the

numerical data. (c) Attachment lifetimes (inverse

detachment rates) of depolymerizing PFs to kineto-

chores at high forces. The numerical data suggests

that the lifetime peaks due to deformations and then

decreases sharply with applied load. The low-force

parts and the peaks can be fitted well with the Wei-

bull distribution, which yields also a reasonable fit

for the experimental data, as shown in panel d. To

see this figure in color, go online.

296 Bertalan et al.
diffusion parameter u. The Weibull function also provides
an alternate fit for the lifetime of attachments with depoly-
merizing PFs in the experimental data, as shown in Fig. 5 d,
together with the original exponential fit. Both fits yield
consistent results, but it is difficult to decide which one is
better. In both cases, the reduced c2 resulting from least-
square minimization is ~10�5, which is a clear indication
of overfitting.

Our model suggests that measuring the lifetime of depoly-
merizing MT attachments to kinetochores should result in a
peak at larger forces. As mentioned before, detachments at
large force are due to a different physical process than the de-
tachments at low forces. In Akiyoshi et al. (29), the destabi-
lization of the kinetochore-MT attachment was attributed to
a switch of the MT from the shrinking to the growing state.
Although we do not discount that possibility, we suggest
the existence of an alternate pathway that could be dominant
at short timescales: When the pulling force is large enough,
the depolymerizing PF is uncurled (see Movie S2).
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Growing microtubules display force-weakening
bonds ruled by the binding affinity with
kinetochore fibrils

In the two-dimensional model, kinetochore fibrils are pulled

with a constant force, while the PF is growing or shrinking.

The time-frame for switching between the two states is

much larger than the detachment times we are able to simu-

late, and therefore the effects of rescue and catastrophe do

not affect our numerical results. To further simplify the nu-

merical simulation and thus the results for longer times, we

model the detachment from polymerizing PFs as a simple

escape from a Lennard-Jones potential with a cutoff and

simulate Eq. 3b. We have tested in some specific cases

that the results are indistinguishable from those obtained

with the complete model.
The result for various values, as plotted in Fig. 6 a, reports

the value of the attachment lifetime (denoted by k3 as in

Akiyoshi et al. (29)) obtained in simulations as a function
FIGURE 6 Detachment from a growing PF. (a)

Attachment lifetimes obtained for the two-dimen-

sional model for polymerizing PFs as a function

of the binding strength-fluctuation ratio e/u

together with the experimental data from Akiyoshi

et al. (29). For a sufficiently high binding strength/

fluctuation ratio, the parameter F3, appearing as the

slope here, stays constant and is the same for the

numerical and experimental data. (b) Extrapolation

of the experimentally observed binding strength. To

see this figure in color, go online.
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of the binding energy-fluctuation ratio e/u together with the
experimental data. Numerical simulations and experimental
data are well fitted with exponential curves, and have the
same slope on a logarithmic scale. In particular, we fit the
rate as

k3ðFÞ ¼ k03ðe=uÞexpðF=F3Þ; (6)

where only the detachment rate at zero force k03 depends on
the ratio e/u, while F3z 3.8 pN is the same for experimental
and numerical data. Plotting 1/k03 vs. e/u for the numerical
result allows us to extrapolate the e/u value for the experi-
ment, e/u z 225 pN ms1/2, as shown in Fig. 6 b. Because
we previously estimateduz 1 nmms�1/2 for the experiment,
we predict the attachment strength of the fibrils to the kinet-
ochore to be ez 225 pN nmz 50 kBT. This is of the order of
magnitude for usual protein-protein interactions, providing
an additional confirmation of the validity of our approach.
Protofilament intrinsic curvature can determine
the stability of MT-kinetochore attachments

The main point of cell division is the segregation of repli-
cated chromosomes into two daughter cells. This is chiefly
executed by the mitotic spindle, consisting of MTs, orga-
nized into two astral structures whose centers derive from
centrosomes and associated proteins. Faithful segregation
of the chromosomes requires proper biorientation, and
thus dynamic kinetochore-MT attachments (i.e., erroneous
attachments such as kinetochores attached to an MT
emanating from the wrong pole) must be allowed for, and
then corrected. In other words, kinetochore-MTattachments
can be unstable or stable, short-lived or long-lived.

For a givenvalue of the diffusion amplitudeu, we can vary
4 and plot the detachment timeswith respect to constant pull-
ing force. We see that the peak height as well as the offset t0
decreasewith4, and at a critical value the detachment time at
zero force t0¼ t(F¼ 0) is higher than the peak. Decreasing4
further makes the peak disappear completely and we end up
with a detachment curve that is purely exponentially
decreasing with applied force. As an example, we plot in
Fig. S1 a in the Supporting Material the detachment times
foru¼ 20 nm ms�1/2 for a set of values of 4. As 4 decreases,
the catch-bond peak is reduced, and is shifted to smaller
forces. At a critical value—for u ¼ 20 nm ms�1/2, it is 4 ¼
0.275—the peak detachment time is at the same height as
the zero-force detachment time t0 ¼ t(Fpeak). Then, the
peak completely disappears for 4< 0.15 and the detachment
curve is a simple exponential decay. These observations
allow us to construct a very simple phase diagram where
the transition line corresponds to the condition for which
the catch-bond disappears. In the stable region, the attach-
ment time increases with small applied forces, while it
decreases in the unstable region. An example for B ¼
5 � 104 pN nm2 and u ¼ 20 is shown in Fig. S1 b. A stable
region for 4 > 0.275 (right dash) and an unstable region for
4< 0.275 splits into a weak part (left dash), where tpeak< t0
and then a truly unstable part (cross dash) with no peak at all.
The same procedure can be repeated for different values ofu,
allowing us to construct a phase diagram for the stability of
the attachment that we report in Fig. S2.
DISCUSSION

A conformational mechanism for the catch-bond

Our model for MT-kinetochore attachments captures and
explains in easy-to-understand terms several key features
of experimentally observed phenomena. Most prominently,
we could reproduce the detachment times of MTs from
kinetochores that are pulled with constant force (29). Using
the model, we simulate the emergence of the catch-bond—
the stabilization by tension—of the kinetochore interface
with a depolymerizing protofilament, emphasizing the role
of the geometrical conformation of the kinetochore-micro-
tubule interface.

We identified different mechanisms of kinetochore-
microtubule detachment for straight and curled protofila-
ment tips, as follows.

1. Kinetochore fibrils are attached to straight protofilaments
and detach due to thermal activation. This detachment is
facilitated by an applied force, resulting in exponential
weakening of the attachment.

2. Neighbor fibrils that have attached to each other form
loops into which curling protofilaments hook. When no
external force is applied, the loop can escape by thermal
fluctuations, i.e., Brownian motion.

3. When the loop and PF-tip are pulled apart, the thermal
fluctuations acquire a bias to move preferentially toward
the tip of the PF, making an escape from a ram’s-horn
conformation more unlikely, thereby stabilizing the
attachment. However, if the pulling force is too strong,
then the ram’s horn becomes uncurled or the loop breaks,
so that the attachment is destabilized again.

The third point makes an experimental prediction—at higher
forces, the detachment rate from depolymerizing PFs in-
creases again—which could be easily be confirmed experi-
mentally. Accordingly, one should extend the experiments
plotted in Fig. 4c ofAkiyoshi et al. (29) tomeasure the detach-
ment rate from depolymerizing MTs at higher forces. The
two-state model of Akiyoshi et. al. implicitly assumes that
the detachment rate should continue to decrease with applied
force,while ourmodel predicts that it should eventually goup.
Geometrical aspects of MT-kinetochore
attachment stability

Another prediction that follows from our results is the stabi-
lization of kinetochore-MT attachments via the intrinsic
Biophysical Journal 107(2) 289–300
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curvature of the MT protofilaments. The simulations show
that the higher the PF curvature, the longer the lifetime of
the attachment. If the intrinsic curvature is small enough,
the stabilization, together with the catch-bond, then disap-
pears and the attachment becomes weaker with applied
force. In our model, the duration of kinetochore-MT attach-
ments depends heavily on the flexural rigidity and intrinsic
curvature of the PFs. In particular, our model suggests that a
variation of the intrinsic curvature 4 can cause a switch be-
tween stable/unstable attachments of depolymerizing PFs
from kinetochores. This seems reasonable, because there
is a broad distribution of bending angles found in experi-
ments (17). Although the intrinsic curvature of a PF in isola-
tion would be solely determined by the angle and stiffness
between GTP/GDP-tubulin blocks, it is not unreasonable
to assume that other factors influence the mechanical prop-
erties of protofilaments, and thereby regulate the stability of
the kinetochore-MT interface.

Our model, therefore, naturally suggests an additional
path to vary the type of the attachment from stable to unsta-
ble, and vice versa. This mechanical process can of course
be seen as complementary to any other accompanying pro-
cess, such as, for example, the stability regulation by Ndc80
(54) and Aurora B (55) or the switch of the MT state from
growing to shrinking (29). In particular, the breakdown of
the catch-bond could also occur according to two additional
pathways: 1), the dissociation of fibril loops and 2), the frac-
ture of MT-PFs. A possible hypothesis is that Aurora B is
responsible for the dissociation of fibril loops because it
phosphorylates the terminal ends of the Ndc80 complex
(54). To the best of our knowledge, the influence of chemi-
cal or biological agents on the elastic properties of MTs and
PFs and their tips has not been studied and it will be exciting
to see whether future experiments prove our predictions.
Comparison with other models

Earlier models for the kinetochore-microtubule interface
make use of the curling of PFs to show how force can be
produced by the geometry of the protofilament (35,39,48).
These studies focus mainly on the load-bearing capabilities
of the PFs and do not go into detail on the mechanism of the
coupling to the kinetochore. Our work builds on these in-
sights, but we do include some very recent experimental re-
sults into our model, allowing us to explore the kinetochore
interface in more detail, and make some specific predictions
based on them.

In contrast to the biased-diffusion based Hill sleeve
(33,34) or the motor-protein-based (40) models, our model
does not investigate the biochemical aspects of the kineto-
chore-MT interface, but focus instead on its mechanics.
The biochemical properties of the interface that are needed,
i.e., the fibril-tip attachment strength to neighbor fibril tips
and the MT surface, are not readily available and have to
be fit. We furthermore investigate phenomena that are
Biophysical Journal 107(2) 289–300
slightly different from the chromosome transport and
breathing for which these models were designed. Our model
sheds light instead on the genesis of the kinetochore-MT
interface together with the role of the geometrical confor-
mation of the PF tips.

An approach that is similar in spirit to ours was recently
published in Zaytsev et al. (32). There the authors also
model the collective action of kinetochore fibrils on the
MTs, but the methodology employed is quite different.
While in that article the authors explore the kinetochore-
MT interface in a mean-field approximation using rate equa-
tions, we simulate directly the movement of each fibril and
its interactions with the MT separately and then look at the
emergent behavior. Tellingly, in both studies the cooperation
of kinetochore fibrils is found to be essential to strengthen
and stabilize the interface. Another difference, of course,
is that we explicitly make use of the geometrical details of
the protofilament curl and base predictions of the emergence
of the kinetochore-microtubule interface upon it.

Our results fit neatly between different facets of the study
of the kinetochore-microtubule interface and condense es-
tablished experimental results into what we believe to be a
new kind of model. Using molecular and stochastic dy-
namics simulations, we are able to elucidate and predict
some very new aspects of the attachment of kinetochore
fibrils to microtubule protofilaments.
CONCLUSIONS

In this article, we introduce a computational model of the
kinetochore-microtubule interface that is based on the syn-
thesis of different experimental observations. It showed
that fibrils extend from the kinetochore and capture MT
tips (16,36); kinetochore proteins form entangled networks
(18); the essential kinetochore protein complex Ndc80 inter-
acts in different ways with curved and straight protofila-
ments (28); and that Ndc80 complexes bind to each other
(27). Hence, we assume that individual kinetochore fibrils
are composed by different essential protein-complexes and
can be treated as building blocks for the kinetochore-MT
interface. We then employ a three-dimensional MT model
treating the tubulin hetero-dimers as wedge-shaped blocks
that can have configurations corresponding to either GTP-
or GDP-bound tubulin. The tubulin blocks organize into
protofilaments with intrinsic curvature (GDP-tubulin) or
without (GTP-tubulin). The kinetochore fibrils are modeled
as bead-spring polymers that can attach to the top-side of
straight protofilaments. The fibril tips also attach to each
other, forming effective loops into which curling protofila-
ment-tips can hook.

The computational model provides a clear illustration of
how the conformation of MT-PFs influences the stability
of their attachments with the kinetochore in a manner that
is quite general and robust. Besides its application to the ex-
periments reported in Akiyoshi et al. (29), our model
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represents a general computational tool that could be useful
to guide future experimental investigations of MT-kineto-
chore interactions.
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Supplementary Movie Captions

Movie S1. Model of the Microtubule - Kinetochore Interface Kinetochore molecules
are assumed to form uniform units represented as fibrils, here shown in red. The tips of
the fibrils, dark red, can sense and attach to the outer surface of an incident microtubule
(blue) if the MT straight, while fibril-tips do not attach directly to MT-tips that curl.
The kinetochore fibril-tips also attach to each other when brought into close contact, a
circumstance that is especially likely when the fibrils attach to the MT as neighbours.
When fibril tips attach to each other, loops are formed into which curling protofilaments of
a depolymerising MT can hook and thus exert force on the kinetochore.

Movie S2. Detail of the kinetochore - MT interface with a single protofilament. This
movie shows a single protofilament interacting with a bunch of kinetochore fibrils from two
different angles. The incident straight protofilament captures some kinetochore fibril-tips.
When hydrolysed and curling, the protofilament-tip hooks into the loops formed by the
fibrils and exerts a force - the loop is visibly pulled out of the mass of the other fibrils, while
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the fibril bases, as well as the protofilament base, are held static and are not allowed to
move. Depolymerisation of the protofilament increases the force exerted on the kinetochore
- the fibril loop stretches further - until the interface fractures.

Movie S3. Fracture of the kinetochore - MT interface I: straight protofilament. This
movie shows the interface of a straight PF with – for simplicity – only one attached kine-
tochore fibril. After initial thermalization, the fibril base is moved with constant velocity,
resulting in the unwrapping of the fibril during which the pulling force is not transmitted
onto the kinetochore-protofilament interface. After the unwrapping is complete, the fibril is
pulled off the PF, after enough force built up to overcome the potential attaching the fibril
tip to the PF.

Movie S4. Fracture of the kinetochore - MT interface II: curling protofilament. We
use the same setup as in movie S3, with the difference that the bases of the kinetochore
fibrils are not held fixed, but each base is attached to every other by linear springs, to
emulate the kinetochore body. At first no external force acts on the fibrils and the curling
of the protofilament transports the fibril bundle a short distance until external forces are
switched. Then the kinetochore fibril bases are pulled with constant velocity which results
in the uncurling of the depolymerizing protofilament and eventual detachment.

Movie S5. Fracture of the kinetochore - MT interface III: curling protofilament, fibril-
bond breakdown. We use a similar setup as in movie S4, with the following differences:
we reduce the number of fibrils to two and the binding energy between the fibril tips by
50%. When the kinetochore fibril bases are pulled with constant velocity, the MT starts to
uncurl slightly, but then the force on the fibril tips becomes too high and they detach from
each other.
2
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Figure S1: Kinetochore-MT attachment destabilization. a) The detachment time as a func-
tion of the pulling force for different values of the protofilament angle ϕ. The
peak only occurs for large ϕ and disappears for smaller ϕ. b) The stability of
the catch-bond behaviour depends strongly on ϕ. The PF could switch between
stable and unstable attachments by changing ϕ.
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Figure S2: Phase diagram. The value of the destabilization angle depends on the diffusion
parameter ω, thus defining a phase diagram for the catch-bond stability for a
given flexural rigidity B.
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