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Abstract. We study the role of the disorder in the dynamics of the domain walls (DW) in nanostrips
with in-plane magnetization. In contrast with previous works where the disorder is due to edge roughness,
we consider the role of a random distribution of voids, thus simulating local changes of the magnetization
saturation value. By making use of the high-speed computational capability of GPUs, and an ad hoc micro-
magnetic code, we compute the speed of DWs under both applied fields (up to 15 mT), and spin-polarized
currents (up to 30 A/μm2), for four different void densities. Field and currents are applied for 20 ns. We also
consider both adiabatic and non-adiabatic spin-torque effects (ξ parameter equal 0 and 0.04, respectively).
For all the cases, we repeat the simulation for 50 realizations of the void distributions. No thermal effects
are considered. While some results can be understood in the line of the models reported in the literature,
some others are much more peculiar. For instance, we expect a lower value of the maximum DW speed.
This actually occurs in the field driven case, but with a less dramatic drop at the Walker breakdown,
due to the difficulty to nucleate an antivortex DW. When nucleated, it gets easily pinned, thus prevent-
ing its retrograde motion typical for disorder-free strips. In the case of current drive with non-adiabatic
spin-transfer torque, the Walker breakdown current increases strongly with the void density. This results
in an increased value of the maximum speed available. Another important consequence of the disorder is
that at low fields/currents the depinning transition regions appear to be more rounded, resembling creep
behavior. This can have important consequences in the interpretation of experimental data.

1 Introduction

A very promising set of future spintronics devices is
based on the static and dynamical properties of the do-
main walls (DWs), as non-volatile memories [1,2], nano-
oscillators [3–5], logic devices [6,7], and as sensors and am-
plifiers [8]. The possibility to apply spin-polarized currents
to manipulate the DW position and dynamics through the
spin-transfer torque (STT) mechanisms opened to a large
set of studies firstly focused on in-plane magnetization
nanostrips (mostly based on permalloy), and progressively
moved to out-of-plane magnetization media (with high
perpendicular magnetic anisotropy such as CoPt), which
require lower applied currents, thanks to the enhanced
non-adiabatic STT [9]. In all these devices it is funda-
mental to fully control the DW position and motion, and
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limiting all the spurious effects, such as thermal fluctua-
tions and any structural disorder. To control the DW posi-
tion, many solutions have been proposed, mostly based on
geometrical constrictions (artificial notches, etc.), that act
as pinning potentials for the walls. To unpin the DWs, the
power consumption (i.e. the required amplitude of spin-
polarized currents) must be reduced as much as possible
to limit the Joule-heating. But, at the same time, the cur-
rents must be large enough to reach the highest DW speed,
so to have ultrafast non-volatile devices required by the
future spintronics applications and by the market.

To understand and control any spurious effect is also
mandatory for any reproducible and reliable device. Ther-
mal effects are important especially when they are able to
overcome the DW pinning potential. In case of relevant
Joule heating effects due to high current densities, it is also
possible to have changes of the magnetization saturation,
especially approaching the Curie temperature. In general,
thermal effects can highly influence the DW motion, act-
ing as a stochastic random magnetic field, or activating
the DW depinning, resulting in a creep-like curve of the
DW speed at low fields/currents, below their deterministic
depinning threshold (see Ref. [10] for a review).
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Disorder effects are much less understood. It is well
known that in a disordered system, DW dynamics can be
unpredictable, jerky and stochastic, as in the Barkhausen
effect in higher-dimensional systems [11]. Experimental
examples in nanostructures have been already reported
extensively [12,13]. It is otherwise fundamental to under-
stand and limit this intrinsic stochasticity, as any real sys-
tem shows a certain degree of randomness which is re-
flected in the observed DW dynamics. At the same time
it is in principle possible to use some form of “artificial”
disorder to engineer regions of the system which can re-
place the geometrical constraints as reproducible pinning
centers. For instance, Basith et al. [14] have recently cre-
ated non-topographic regions with ion irradiation in a fo-
cused ion bean. Other studies have clearly showed that
the roughness of the strip edges enhances the DW propa-
gation [9,15], and that spatial variations of the saturation
magnetization act as an increased effective damping in the
dynamics of a vortex wall [16]. Also, a simplified line-based
model of a transverse wall interacting with point-like, ran-
domly distributed disorder has been presented [17,18].

In this paper, we extend our previous work [19], with
the aim to study the DW dynamics with in-plane magne-
tization in which the source of disorder is due to a random
distribution of small voids in a nanostrip. This simulates
local changes of the magnetization saturation value, as for
instance due to the presence of defects or/and small im-
purities. As expected, we found that in general the DW
dynamics is (negatively) influenced by the presence of the
disorder, as for instance in decreasing the maximum speed
available. Remarkably, in some cases we found that the
disorder is able to suppress the retrograde motion of the
DW resulting in a higher speed. We also found that in
more general terms, the curves of the DW speed vs ap-
plied/currents are significantly affected, suggesting to use
caution in the interpretation of the experimental curves.

2 Micromagnetic simulations

2.1 The Landau-Lifshitz equation

As a first test to analyze the influence of disorder in the
DW dynamics, we simulate a permalloy nanostrip with
in-plane magnetization pointing along the strip longitu-
dinal axis. Choosing a small thickness of 10 nm, and
a width of 100 nm, DW structure is basically given by
a transverse V-shape DW (V-DW), separating head-to-
head domains. The time evolution of the magnetization
M(r, t) = MsM̂(r, t), is studied using the Landau-Lifshitz
(LL) equation with the spin-transfer torque terms [20],

∂M
∂t

= − γ

1 + α2
M × Heff

− αγ

Ms(1 + α2)
M × (M × Heff)

− bj

M2
s (1 + α2)

M × (M × (j · ∇)M)

− bj

Ms(1 + α2)
(ξ − α)M × (j · ∇)M, (1)

where Heff is the effective magnetic field (with contribu-
tions from the external, exchange, demagnetization), γ is
the gyromagnetic ratio, α is the Gilbert damping constant,
ξ is the degree of non-adiabaticity, j is the current density,
and bj = PμB/(eMs(1+ ξ2)), with P the polarization, μB

the Bohr magneton and e the electron charge. We use the
material parameters Ms = 860 × 103 A/m and α = 0.02.

To properly distinguish between spurious effects due
to disorder and thermal fluctuations, we explicitly set the
temperature to zero. The quenched disorder is simulated
by introducing void cells with zero magnetization of sizes
3.125 × 3.125 × 10 nm3 at four different densities σ =
3125 μm−2, 6250 μm−2, 9375 μm−2 and 12 500 μm−2,
respectively. For each density, we make 50 realizations of
the disorder.

2.2 GPU based micromagnetic simulations

We simulate equation (1) with the micromagnetic code
MuMax [21] running on Graphics Processing Units
(GPUs). This hardware was originally designed for image
rendering but is also very suitable for high performance
numerical computations. Indeed, while a CPU can only
run 1 process at the time, GPUs have O(10, 000) threads
which can run in parallel. Furthermore, they have their
own on-board memory which enables fast read and write
operations. Therefore, in MuMax, all computations are
performed on the GPU based on the instructions dictated
by the CPU. This way, the much slower communication of
large data sets between the CPU and GPU is minimized.

The micromagnetic computations are performed
adopting a finite difference time domain discretization of
the LL-equation (1). This means that the geometry is dis-
cretized using identical rectangular prisms in which the
material properties as well as the fields are defined. This
uniform grid enables the use of fast Fourier transform to
speed up the demagnetizing field computations which is,
due to their long range nature, the most time consum-
ing part in micromagnetic simulations [22]. Furthermore,
the time evolution of the magnetization is computed us-
ing Runge-Kutta time stepping schemes. The implementa-
tion of highly efficient algorithms combined with the huge
parallel power of the GPU hardware makes it possible to
speed up micromagnetic computations with two orders of
magnitude [21]. This enables us to simulate in a reason-
able time a large number of applied fields (0.5–15 mT) and
currents (1–30 A/μm2), both in the adiabatic (ξ = 0), and
non-adiabatic case (ξ = 0.04).

2.3 Definition of DW speed

In a perfect system, the definition of speed of a moving
wall does not represent any difficulty. One can consider the
displacement traveled along a given time, and the ratio of
the two quantities gives the DW speed. In the case of a
disordered system, where the probability of being pinned
by a random configuration of voids is not-null, we need to
properly set an operative definition of the speed.
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Fig. 1. (Color online) Snapshots of DW position at about 2 ns for nine applied fields (0.5, 2, 3.5, 4.5, 6.5, 8.5, 10.5, 12.5,
14.5 mT, from top to bottom, respectively), in a perfect nanostrip (left) and in a disordered nanostrip (right), having a void
density of σ = 6250 μm−2. Sections of the strips have sizes of 100 × 900 nm2. The central core of the antivortex points upward
(white) when moving from bottom to top, and downward (black) when moving from top to bottom.

To avoid fluctuations due to any transient, it is first
necessary to define a starting and an ending point in the
nanostrips at a given distance over which to calculate the
speed. Then we can let the system run for a fixed time:
we choose for instance the value ΔT = 20 ns. Because of
the not-null probability of pinning, we can first consider a
“conditional velocity”, given by DWs which actually move
between the points, and get rid of any other which do not
reach the second point. Except for small effects due to nu-
merical noise, there is no possibility for the DW to depin,
as we explicitly do not have any temperature effect. The
DW speed is thus defined averaging over the realizations
of the disorder. This definition of the DW speed is use-
ful for a direct comparison with the void-free case, as for
instance to understand the effect of the disorder to affect
the maximum speed at the Walker breakdown.

On the other hand, this definition does not take into
account the probability of pinning, so it is not suitable
for a direct comparison with the experimental data. Thus
we define an “experimental velocity” vexp as the condi-
tional velocity times the probability to reach the end, i.e.
to not be pinned by the disorder. This probability actu-
ally depends on the observation time, and on the distance
traveled, so vexp is a scale-dependent quantity.

3 Field driven DW dynamics

3.1 Walker breakdown and collective pinning

Figure 1 shows a direct visual comparison of the differ-
ent behavior of the DW dynamics in a perfect and a dis-
ordered nanostrip (at a density of 6250 void cells/μm2)
when driven by an external magnetic field applied along
the nanostrip axis. The resulting DW speed vexp is re-
ported in Figure 2.

At low fields, the void-free strip displays the well-know
linear behavior up to the Walker breakdown HW (about
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Fig. 2. (Color online) The DW speed vexp (see text for its
definition) in the void-free and disordered nanostrips having
different densities of void cells. Dotted vertical lines refer to
the nine applied fields shown in Figure 1.

2.5 mT in this case), due to the undisturbed motion of
the V-DW (first two rows of Fig. 1). On the contrary, in
the disordered strips, the V-DW is set into motion only
for fields larger than a depinning field Hdep(σ), which in-
creases with σ, and reaching the maximum speed at lower
values compared to the void-free case, as one can expect.
This pinning is due to the collective contribution of the
voids, and it is known as collective pinning. The highest
speed results at a disorder-dependent Walker field HW (σ).
The reason is due to progressive difficulty to nucleate an
antivortex (AV-DW) with an upward-oriented core (white
in the figures) from the bottom edge, whose retrograde
motion is responsible for the steep drop in the speed in
the void-free case. In the disordered strips, in fact, when
the AV-DW enters the system, depending on the local void
configuration, it can (i) be pushed back out of the system,
i.e. it is immediately suppressed, (ii) find a “free channel”,
i.e. a path in the strip free of voids enabling both forward
or backward motion, or (iii) get pinned by a local void

http://www.epj.org


Page 4 of 6 Eur. Phys. J. B (2013) 86: 86

Fig. 3. (Color online) Dynamics of an antivortex DW driven by a field of 8.5 mT. The snapshots have sizes of 100 × 200 nm2,
and are shown every 0.1 ns, from top-left to bottom-right. Motion along a void-free channel (first three snapshots of the first
and of the third row) can reach the remarkable velocity of about 200 m/s.

structure. The first case is similar to the suppression of
the AV-DW nucleation in case of rough edges [15], while
the other two are peculiar of our “bulk” disorder, and
need a separate discussion (see below). As a consequence,
the drop after the Walker breakdown is less deep, and
more rounded, as in the limiting (and unrealistic) case of
the highest void density. For fields higher than HW , the
increase of the pinning probability due to the core pin-
ning mechanism (see below) leads to very low values of
the experimental velocity. For instance, in Figure 1 at the
highest field in the disordered strip a (rare) vortex DW
is nucleated (bottom right), and indefinitely pinned by a
local void configuration.

3.2 Dynamics of the antivortex DW

Figure 3, taken for H = 8.5 mT, helps us to better under-
stand the richness of the AV dynamics moving between
the edges of the nanostrip. The first row shows a nucle-
ated and stable AV moving forward, in the direction of
the field, along a small “channel” free of voids. The over-
all structure of the wall is highly deformed by the disorder,
but still the central core moves at the remarkable speed of
about 200 m/s. At the top of the core there are two groups
of three adjacent voids each (let us call them “triplets” for
short), to which the AV gets temporarily pinned. These
triplets actually represent a barrier to the upward motion.
Because of the high pressure of the external field, the AV
is able to detach from them moving downward first, and
then upward along another free channel. Finally, the wall
reaches another triplet structure where it gets pinned in-
definitely. This dynamics is quite typical at fields larger
than HW (σ), even if occasionally the motion along free
channels can be retrograde, as in the void-free case.

We do not actually know if the triplet structure in-
duces a particular magnetic field distribution which acts
as a natural pinning center for the AV-DW. We note that
a triplet has a spatial extension (roughly 3 times the cell
lateral dimension) which is close to the strip thickness
of 10 nm. Clearly, further simulations varying the sample
thickness and/or the void dimensions will confirm these
conjectures. Anyway, we can at least conclude that some
local structures of voids are able to control the DW dy-
namics of the AV-DW in an almost predictable way, even
if we cannot supply further details.

The mechanism of pinning of the AV-DW is unique
and can be dubbed as core pinning: the wall core stands
exactly on a local structure of voids (another triplet, in
the case of Fig. 3), and even the largest applied fields are
not able to depin it. In fact, the Zeeman torque in the
wall points out-of-plane (yellow-green and purple-blue re-
gions), thus it is not directly pushing the central core. This
torque thus induces demagnetizing fields, which actually
try to push the wall away from the voids, but cannot com-
pensate the reduction of the demagnetizing field due to a
core with zero magnetization.

4 Current driven DW dynamics

4.1 Adiabatic spin-transfer torque effect

To investigate the effect of spin transfer torques, we apply
a spin-polarized current with density j = −jextx̂, and po-
larization P = 0.5 along strips of lengths 6.4 μm. Let us
first consider the case of the adiabatic SST (ξ = 0 in
Eq. (1)). As well-known, a threshold current exists (about
15 A/μm2 here) below which there is no steady motion
of the V-DW. This is referred as intrinsic pinning, and it
is due to the balance between the adiabatic spin-torque
and the effective field torques. The presence of the voids
induces a significant distortion of the wall shape, leading
to a more difficult balance of the two torques. The net
effect is a reduction of the threshold critical current of al-
most 20%, as shown in Figure 4. This is quite a surprising
result, as one expects in general an increasing difficulty of
motion in case of a disordered system. We can also note
that the lower threshold is independent of the void density,
and resembles the typical rounding of a depinning tran-
sition at finite temperatures. Here, we must remind that
we set the temperature to zero, and thus this rounding is
only due to the presence of disorder.

At larger currents the highest speed is reached in the
void-free strip, as expected. The DW dynamics is charac-
terized by nucleation, forward motion, annihilation of an
AV-DW, in both cases of void-free and disordered strips.
Interestingly, the central core of the AV-DW is nucleated
with an opposite out-of-plane magnetization compared to
the field driven case. This is because of the opposite sign
of the last term of equation (1) in respect of all the others.
Surprisingly, we did not observe any core pinning, in con-
trast with the field-driven case. As the core shows the
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Fig. 4. (Color online) Experimental DW speed vexp for spin-
polarized currents jext and adiabatic spin-torque effects (ξ = 0
in Eq. (1)), in a void-free nanostrip (σ = 0, black dots), and in
four disordered strips with different void densities.

Fig. 5. (Color online) Dynamics of multiple antivortex in a
strip with void density of 6250 μm−2, with a spin-polarized
current of 12 A/μm2. The snapshots of 100 × 350 nm2 are
taken every 0.1 ns. The antivortex at the bottom edge is nu-
cleated first and moves forward, while the second on the top
edge nucleates later and moves backward. Their annihilation
occurs within 0.5 ns.

largest magnetization gradients, the torque acting on it is
always very large, and no void structure (at least in this
case) is able to decrease the energy enough to stably pin
the wall.

For relatively high void densities (σ ≥ 6250 μm−2),
we also occasionally observe two different types of wall
dynamics: (i) the nucleation of multiple AVs (Fig. 5), and
(ii) the switching of polarity of the AV core (Fig. 6). A con-
figuration with multiple AVs is highly unstable, as, in the
case of Figure 5, they try to move in opposite directions.
They quickly annihilate (less than 0.5 ns), anyway lower-
ing the overall DW speed. On the contrary, the switch of
the AV core, from upward (white) to downward (black)
direction in Figure 6 does not lower the velocity signifi-
cantly. The origin of this switch is not clear, by the way,
as the local void does not show any particular structure,
unless the voids in the bottom part of the strip could act
as temporary barrier for the motion of the lower part of
the AV (purple-blue region). Both these AV-DW dynamics
occur especially for applied currents around the threshold
value, which confirms the intrinsic instability of the mag-
netization dynamics in this region.

Fig. 6. (Color online) Switch of the core polarity of an an-
tivortex during the forward motion in a strip with void density
of 9375 μm−2, under a spin-polarized current of 14 A/μm2.
The snapshots of 100 × 200 nm2 are taken every 0.1 ns. The
antivortex with upward/downward oriented core (white/back)
moves downward/upward, respectively.

4.2 Non-adiabatic spin-transfer torque effect

We now consider the effect of the non-adiabatic SST
on the DW dynamics, using a value of non-adiabaticity
ξ = 0.04 in equation (1). The DW speed vexp is reported
in Figure 7, and shows Walker-like dynamics at low cur-
rents, and an adiabatic-like behavior at larger currents.

At low current values, no intrinsic pinning occurs, and
the V-DW moves quite rigidly along the strip. In case of
disordered strips, this happens for currents larger than a
depinning current jdep(σ), in analogy with the field driven
dynamics. Note that the depinning transition is rounded
as in the case of thermal effects.

For large currents, an AV-DW is nucleated at current
values which increase with the void densities. The maxi-
mum speeds thus occur at more disordered strips, and in
the highest limits, the Walker breakdown is almost sup-
pressed. This is an extremely unexpected but interesting
result: the disorder acts to enhance the DW dynamics.
For instance, at the void density σ = 6250 μm2 there is
no AV-DW nucleation, and the AV-DW moves forward
with small deformations which accommodate for the void
structure, but no pinning occurs. This is a quite different
result in respect to the edge roughness effect [15], where
the maximum speed is almost the same of the perfect strip:
here, we have a significant increase of the highest attain-
able speed.

5 Discussion and conclusions

In this paper, we have extended our recent study of
domain wall dynamics in disordered permalloy nanos-
trips [19]. The presence of disorder induces a rich variety of
effects on the DW dynamics, including different DW pin-
ning mechanisms (collective and core pinning), as well as
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Fig. 7. (Color online) DW speed vexp for spin-polarized cur-
rents jext and both adiabatic and non-adiabatic spin-torque
effects (ξ = 0.04 in Eq. (1)), in a void-free nanostrip (σ = 0,
black dots), and in four disordered strips.

partial suppression of both the Walker breakdown and the
intrinsic pinning mechanism in the case of the adiabatic
spin transfer torque. The presence or absence of these ef-
fects depends strongly on the mode of driving (field or
current) as well as on the details of the DW structure
(e.g. core pinning acts on the antivortex core). For mo-
bile DWs the effect of disorder can be accounted for by
describing it in terms of effective parameter values of the
system (such as the effective damping parameter α), but
this picture is complicated by the fact that DWs can also
get pinned by the disorder.

As often mentioned, here we considered a zero tem-
perature system, to better understand the effect of the
structural disorder. In real systems one could also en-
counter creep motion consisting of a sequence of DW pin-
ning and thermally activated depinning events. On the
other hand, we have also seen that close to the depinning
field/current density the velocity versus driving force re-
lation can exhibit non-linearities typical of creep motion
even for T = 0, thus highlighting the importance of be-
ing careful when interpreting the experimental velocity vs
field/current density curves.

As any real system, including the ones used for vari-
ous spintronics devices, necessarily includes several possi-
ble sources of structural disorder (e.g. thickness fluctua-
tions of the strip, grain structure of the material, as well
as various localized impurities and defects), the disorder
effects for the DW dynamics need to be understood and
controlled, in order to be able to produce devices oper-
ating in a reliable fashion. In particular, the inherently
stochastic nature of the DW dynamics presents a chal-
lenge for devices where it is essential to control the DW
dynamics in a reproducible manner. On the other hand,
disorder can have also beneficial effects for technological
applications: for instance, for ξ > 0 the DW velocity for a
specific range of current densities can be increased when
disorder is included or its strength is increased. At the
same time the structural stability of the DW is enhanced
by disorder (visible e.g. as the partial suppression of the
Walker breakdown by the disorder, in combination with

a finite depinning field/current), suggesting that in some
cases it could be desirable to deliberately engineer dis-
order into the system, for instance to replace notches to
pin the DWs [14]. In addition, a related possibility is to
control the material parameters of the system by doping,
for instance by tuning the degree of non-adiabaticity of
permalloy wires by doping them with vanadium [23].
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