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Abstract. Statistical physics has been applied in the last decades to several problems in mechanics, in-
cluding fracture and plasticity. Concept drawn from percolation, fractal geometry, phase-transitions, and
interface depinning have been used with varying degrees of success to understand these problems. In this
colloquium, I describe recent successes and current challenging problems for statistical physics in fracture
and plasticity, focusing on the roughness of cracks, fracture size effects and micron-scale plasticity.

1 Introduction

Understanding how materials respond to external
mechanical perturbations is a central problem of science
and engineering. In most practical cases disorder and
fluctuations are unavoidable, leading to sample-to-sample
variations and non-trivial size effects. The size dependence
of strength is a well known but still unresolved issue in the
context of fracture (for a recent review see [1]). Similarly,
in micro and nanoscale samples, the plastic yield strength
displays size effects and strain bursts [2,3], features that
are not present in macroscopic samples where plasticity
is a smooth process (for recent reviews on microplastic-
ity see [4–6]). These problems are becoming particularly
important in the current miniaturization trend towards
nanoscale devices, since the relative amplitude of fluctu-
ations grows as the sample size is reduced. The presence
of large fluctuations makes the use of conventional contin-
uum mechanics problematic and calls instead for a statis-
tical physics approach.

Most of the complexity in fracture and plasticity stems
from the interplay between long-range elastic interactions
and structural disorder. Statistical physicists have devel-
oped a full machinery of analytical and numerical meth-
ods to tackle these problems. For instance, theories for the
depinning transition of elastic manifolds of disordered me-
dia [7,8] play a central role in our current understanding
of various problems, from crack propagation and rough-
ening to solid solution hardening in plastically deformed
materials. Yet, a complete quantitative description is only
possible for simple idealized systems like single a planar
crack in a random toughness field [9–12] or individual or
periodic arrays of dislocations in a cloud of immobile so-
lute atoms or threading dislocations [13,14]. In most cases,
however, fracture and plasticity are due to more complex
processes in which many interacting cracks or dislocations
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grows or move at the same time. It is an open question if
concepts and ideas valid idealized systems can be applied
directly to more realistic conditions.

Fracture size effects are a fundamental problem in the
design of components, structures and devices that are sub-
ject to elastic loads. It is clear that when we design some-
thing, we want to make sure that it does not fail after-
wards. The straightforward way to avoid this problem is
to perform a test and see what is the load that can be
carried by our sample without failing. Then this result
can be used to define appropriate safety factors for the
reliability of structures, components etc. This program
faces, however, two main difficulties. First, the strength
is usually not a deterministic but a random variable, so
that nominally identical samples can fail at very different
loads. Hence, a test on on a single sample is usually not
enough. Second, performing a direct test is not always fea-
sible. The classical example is the construction of a dam:
we cannot test in advance if the dam will resist a flood.
What is done is to examine small scale models and then
rescale the results, but this can only be done if we can ad-
equately control size effects. Failure to do so has produced
terrible catastrophes in the past, such as the collapse of
the Malpasset dam in 1959 killing 400 people [15]. While
our understanding of size effects has improved in the past
century, with countless phenomenological theories, both
statistical and deterministic, there is still no consensus in
the literature about what law to use and when.

Plasticity has the convenient feature of being size inde-
pendent at large scales, and therefore the design of reliable
large scale structures is not such a big issue as in fracture.
Size effects arising at small scales, however, may generate
serious problems for plastic forming processes in materials
processing and manufacturing technology. Due to the cur-
rent trend in pushing devices to smaller and smaller scales,
a new frontier of the field is represented by the study of
micro and nanoscale plasticity – a typical application are
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bonding wires for connecting integrated circuits, with wire
thickness that is rapidly approaching the micron range.
At these scales, size independent smooth plastic flow, de-
scribed by conventional continuum plasticity, gives way to
scale dependent spatio-temporal intermittency and ran-
domness. Unpredictable fluctuations in the mechanical
properties and spontaneous deformation localization may
reduce formability and hinder device functioning. It would
be desirable to produce strong micron-sized components,
with high yield stresses but without the nuisance of inter-
mittency. At present, it is not clear if this might even be
possible. These findings pose intriguing questions about
the possibility of homogenization, and hence about the
applicability of continuum descriptions for micron sized
samples. Increasing miniaturization of mechanical devices
is rapidly leading us to scales where the typical finite el-
ement mesh becomes of the order of the size of collective
plastic fluctuations. In order to tackle this issue, we need
to make a step backwards to the very foundations of plas-
ticity theory.

In this colloquium, I will first discuss the problem of
crack roughness, describing the success of the depinning
theory and highlighting open issues. Next, I will discuss
current challenges posed by size effects in fracture and
micron-scale plasticity.

2 Crack roughness

2.1 Self-affine scaling of crack surfaces

Understanding the morphological properties of fracture
surfaces has been a major topic of investigation in the
last decades. Fracture surface have been originally char-
acterized by self-affine scaling [16,17], but understanding
the value of the roughness exponent and its universality
classes is still an open problem (for a recent and com-
prehensive review see [18]). Crack surfaces are character-
ized by a height profile h(x, y), where x is the direction of
propagation of the crack (see Fig. 1A). Most early mea-
surements focused on the out-of plane correlation function
along the y direction,

C(y − y′) ≡ 〈(h(x, y) − h(x, y′))〉 � |y − y′|2ζ⊥ (1)

with a universal exponent ζ⊥ � 0.8 irrespective of the ma-
terial studied [17]. In particular, experiments have been
done in metals [19], glass [20] and rocks [21], covering
both ductile and brittle materials. Some experiments re-
vealed a small exponent ζ⊥ = 0.4 − 0.6 at smaller length
scales [17]. It was originally conjectured that crack rough-
ness displays a universal value of ζ⊥ � 0.8 only at larger
scales and at higher crack speeds, whereas another rough-
ness exponent in the range of 0.4− 0.6 would be observed
at smaller length scales under quasi-static or slow crack
propagation [17]. However, more recent experimental re-
sults revealed that the short-scale value is not present in
silica glass, even when cracks move at extremely low ve-
locities [22]. In addition, in sandstone and glass ceramics,

it was only possible to measure a value of ζ⊥ � 0.45 even
at high velocities [22,23].

Crack surfaces has also been analyzed along both di-
rections, showing an anisotropic scaling behavior [22,24]

Δh(Δy, Δx) = Δxζ‖f(Δy/Δx1/z)

where f(u) ∼
{

1 if u � 1
uζ⊥ if u � 1.

(2)

Equation (2) has the same form of Family-Vicsek scaling,
with z = ζ⊥/z‖ being the dynamic exponent, commonly
used to describe spatio-temporal roughness of dynamics
interfaces. In the case of fracture x would play the role of
time. This is justified by the fact that the final fracture
surface is nothing but the trail left by the crack line as it
advances through the medium [20,25].

2.2 Depinning of a planar cracks

The clearest example of crack depinning is the case of
a planar crack front, studied experimentally in refer-
ences [26–28]: two Plexiglas plates were sandblasted and
then glued together in order to create a disordered low
toughness plane where the fracture could propagate. Due
to the transparency of the material it was then possi-
ble to follow the propagation of the crack as it advanced
through the plane (see Fig. 1B). The crack front advances
in avalanches, as would be expected from a line driven in
a disordered medium. The morphology of the crack front
was analyzed extensively and the roughness exponent was
originally estimated as ζ = 0.63 [26,27]. In reference [29],
the authors record crack avalanches by defining their area
by looking at the map of the local waiting times. In this
way, it was found that the avalanche area distribution is
a power law independently on the crack average velocity.

To understand this experiment, we can schematize the
crack as a line moving on the xy plane with coordinates
(x, u(x, t)) [9–12]. An equation of motion for the deformed
line position is obtained by computing, from the theory
of elasticity, the variations to the stress intensity factor
induced by the deformation of the front. In the quasistatic
scalar approximation, this is given by [30]

K({u(x, t)}) = K0

∫
dx′ u(x′, t) − u(x, t)

(x − x′)2
, (3)

where K0 is the stress intensity factor for a straight crack.
The crack deforms because of the inhomogeneities present
in the materials, which give rise to fluctuations in the local
toughness Kc(x, u(x, t)). These ingredients can be joined
together into an equation of motion of the type

Γ
∂h

∂t
= Kext + K({u(x, t)}) + Kc(x, u(x, t)), (4)

where Γ is a damping term and Kext is the stress in-
tensity factor corresponding to the externally applied
stress [9,10,12]. Equation (4) belongs to the general class
of interface models. Due to the long-range nature of the
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Fig. 1. (A) The geometry of a propagating crack in mode I. The fracture surface is parametrized by a function u(x, y) that
displays self-affine scaling. (B) A planar crack seen from above. The front moves in avalanches that are composed by disconnected
clusters due to the long-range elastic interactions.

elastic kernel, scaling as K(q) ∼ |q| in Fourier space, the
theory predicts that the roughness exponent is given by
ζ � 0.35 [12,31], which is in disagreement with earlier
experiments [26–28], but in agreement with more recent
experiments [32] suggesting that the high value of the
roughness exponent (i.e. ζ = 0.6) is due to small micro-
crack coalescence and crosses over to ζ = 0.35 at larger
lengthscales.

The validity of equation (4) to describe planar crack
front propagation is also confirmed by the statistical anal-
ysis of crack avalanches [33,34]. In the original experimen-
tal paper [29], avalanches were defined by analyzing the
front waiting times. Since the front is always moving, al-
though slowly, an avalanche can be defined as a connected
region where the local velocity is above a threshold. In-
teractions in equation (4) are long-ranged and therefore
it can happen that two disconnected regions are casually
connected and therefore part of the same dynamical event.
One can therefore define an avalanche as the region of ca-
sually connected events and split it into locally connected
clusters [34]. It turns out that both avalanches and clus-
ters sizes (s and a) are power law distributed with two
different exponents τ = 1.25 and τa = 1.5 in agreement
with the theoretical predictions [34].

To summarize, experimental measurements of the
roughness of planar crack fronts and of more general crack
surfaces typically display crossover scaling between large
exponents (i.e. ζ � 0.6 or ζ⊥ � 0.8) at small lengthscales
and smaller exponents (i.e. ζ � ζ⊥ � 0.3 − 0.4) at larger
lengthscale. There is also indication that multiscaling is
present a short lengthscales [32]. The prevalent interpre-
tation of these data considers the large lengthscale ex-
ponent as a manifestation of the scaling associated with
interface depinning with long-range forces [22,24]. The
small scale regime should instead be due to processes that

deviate from linear elasticity, but a quantitative theory is
still missing.

3 Fracture statistics and size effects

3.1 The problem of fracture size effects

Understanding when materials fracture has been a
problem for centuries and more. A crucial issue is the non-
trivial dependence of the fracture strength on the charac-
teristic lengthscales of the samples: the fracture size ef-
fect. This phenomenon was already noted by Leonardo da
Vinci, who measured the carrying-capacity of metal wires
of varying length [35]. He observed that the longer the
wire, the less weight it could sustain. The reason for this
behavior is rooted in the disorder present in the material.
The key theoretical concepts needed to understand the
problem date back to the pioneering work of Gumbel [36]
and Weibull [37] on the statistics of extremes. The gen-
eral idea stems from a weakest link argument: the failure
strength of an extended object is ruled by its weakest local
subvolume. For a disordered system, the larger the sample
the easiest it is to find a weak region. The Weibull distri-
bution represents still today the main tool used to analyze
failure statistics in various materials, although the valid-
ity of its underlying assumptions is in general difficult to
demonstrate.

Real samples can not generally be schematized as a
chain of independent elements with random failure thresh-
olds. In many cases, such as in quasi-brittle materials, the
sample does not even fracture at once but sustains a con-
siderable amount of damage before failure. Furthermore,
long-range elastic interactions could correlate different re-
gions of the sample invalidating the assumptions used to
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Fig. 2. Size effects measured experimentally in concrete samples. The results can be fitted with a variety of “size-effect laws”,
but it is difficult to decide if any of those works (adapted from Ref. [40]).

derive the Weibull statistics. The assumption that interac-
tions and microcrack growth would be irrelevant at suffi-
ciently large scales, leading to the recovery of the Weibull
distribution, has never been proven rigorously. It would be
desirable to relate the failure statistics to some geometrical
characteristics of the microstructure of a material, going
beyond a simple description of a sample as a collection of
regions with different random strengths.

The assumption of independent random damage is
hard to justify in quasi-brittle materials, such as con-
crete and many other composites, where sample failure is
preceded by significant damage accumulation and by the
formation of large flaws [38]. Failure in quasi-brittle mate-
rials is thus determined by the competition between deter-
ministic effects, due to the stress enhancement created by
the flaw, and the damage accumulation around the defect
due to the stress concentration. The effect of disorder is
often treated in an effective medium sense by defining a
fracture process zone (FPZ) around the crack tip. Start-
ing from these observations, several theoretical formula-
tions based on linear elastic fracture mechanics (LEFM)
have been proposed in the literature and compared with
experiments [15,39]. The problem is that the scatter in the
experimental data is so great that it is difficult to decide
which theory is correct basing the analysis only on the
average strength (see Fig. 2) [40]. In addition, one is of-
ten interested in extrapolating the results to large scales,
relevant for engineering problems, where the theories de-
viate dramatically one from the other and no experiments
are available. Notice also that LEFM is a continuum the-
ory and does not tell us anything about fluctuations. The
statistical physics approach offers a possible way to out
with the use of simple lattice models, which allow for rel-
atively simple descriptions of disorder and elasticity [41].
The models are sometimes amenable to analytical solu-
tions, and usually are simulated numerically. In the sim-
plest approximation, elastic interactions are replaced by

a load transfer rule which is applied when elements fail
or get damaged. These fiber bundle models can be solved
exactly in some cases [42] and can thus provide a useful
guidance for the simulations of more realistic models in
which the elastic medium is represented by a network of
springs or beams (for a review see Ref. [41]). In this case,
the local displacements can then be found by standard
methods for solving coupled linear equations. Disorder is
modeled by imposing random failure thresholds on each
element or by removing a fraction of the links. The lat-
tice is loaded imposing appropriate boundary conditions
and the fracture process can be followed step by step, in
a series of quasi-equilibria. The simplest and widely used
model in past decades has been the random fuse model
(RFM) [43], a lattice model for the fracture of solid ma-
terials in which as a further key simplification vectorial
elasticity has been substituted with a scalar field.

3.2 Extreme value theory

Extreme value theory (EVT) represents the first statis-
tical theory to deal with fracture size effects [36,37,44].
EVT idealizes a random elastic solid as a chain with ran-
dom failure strengths for each link (see Fig. 3A). The chain
is supposed to fail when the external stress is sufficient to
break the weakest link. The failure strength distribution
is then related to the distribution of the minumum value
of a set of random numbers corresponding to the failure
strength of each link. In mathematical terms, we consider
a series of N elastic links that can sustain at most a stress
xi without breaking. Assuming that the threshold stresses
xi are independent random variables distributed accord-
ing to a probability density function p(xi) and cumulative
(survival) probability S(σ) ≡ P(xi > σ) =

∫ ∞
σ

p(x)dx,
the global survival probability SN (σ) for a chain composed
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Fig. 3. (A) The weakest link hypothesis. The sample is considered as a chain composed by links of different strength σi. The
chain fails when the weakest link fails. (B) Nucleation theory. The sample contains a collection of microcracks and the largest
one will grow and break the sample. (C) Renormalization group. We can coarse grain the system by subdividing it in four boxes
with different strength σi. The strength of the large system is chosen to be the minimum of the stresses of the subsystems. If
the strengths are independent random variables, by iterating this transformation we recover the results of extreme value theory.

by N links under a stress σ is given by

SN (σ) = S(σ)N . (5)

In the limit N → ∞, SN (σ) converges to an asymptotic
form when stress is properly rescaled

S∗(σ) = lim
N→∞

S(ANσ + BN )N , (6)

where AN and BN are appropriate rescaling constants. It
is possible to prove that the asymptotic distribution can
have only three forms: the Gumbel, the Weibull, and the
Fréchet distributions. The Gumbel distribution is given by

Λ(σ) ≡ exp[−eσ], σ ∈ �, (7)

the Weibull distribution is given by

Ψα(σ) ≡ e−σα

, σ, α > 0, (8)

while the Fréchet distribution is not relevant for fracture.
The asymptotic behavior of the rescaling constant deter-
mines the size effect law. For the Gumbel distribution the
typical strength scales as 1/ log(N) and for the Weibull
distribution as N−1/α.

Since the Gumbel distribution is defined also for nega-
tive values of σ and failure stresses are obviously only pos-
itive, the Weibull distribution is the most commonly used
distribution to fit experimental results. Excluding a priori
the Gumbel distribution is not really justified: one could
argue in the same way that the Gaussian distribution can
not be used to fit the sum of positive random numbers
since it would allow for a finite probability for negative
numbers. As for the Gaussian distribution the convergence
to the Gumbel distribution occurs only asymptotically and
the contribution of the negative tails vanishes in the limit
N → ∞.

3.3 Renormalization group

In statistical physics, the natural framework to investigate
large scale properties of interacting system is provided
by the renormalization group (RG) theory. Typically, a
RG transformation proceeds in two steps: in the first step
the system is coarse-grained by eliminating short length-
scale degrees of freedom, and then the resulting system
is rescaled. The RG coarse-graining for fracture is equiva-
lent to the weakest link hypothesis [45,46]: a system of size
L in d dimensions survives at a stress σ if its n(b) = bd

sub-systems of size L/b survive at the same stress (see
Fig. 3C). This coarse-graining leads to the following re-
cursion relation for the survival probability

SL(σ) =
[
SL/b(σ)

]n(b)
. (9)

The second step of the RG transformation is to rescale the
stress in order to find fixed point distribution S∗ that is
invariant under RG

S∗(σ) = R[S∗(σ)] ≡ [S∗(Aσ + B)]n(b) . (10)

Clearly repeated iteration of the RG transformation leads
to the same results as the asymptotic limit of EVT, but
the RG framework could be useful to better understand
the role of elastic interactions. The EVT fixed point is
derived assuming that no interactions are present: failure
stresses are considered as independent random variables.
If the theory is correct then elastic interaction should be
irrelevant at large length scales. Recent large scale numer-
ical simulations of the RFM indicate that indeed this is
the case at least for weak disorder [47].
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3.4 Nucleation theory

EVT theory describes the asymptotic properties of the
failure probability distribution, but its convergence can
be quite slow on the low probability tails [47]. On the
other hand, it is sometimes of great importance to eval-
uate the failure probability at low stresses. To this end,
one can use an analogy with nucleation theory and com-
pute the stress required to turn unstable the least stable
crack in the system [48–51]. The energy associated with
a linear crack of length a under a far-field stress σ in two
dimensions is given by

E = −πσ2a2

2E
+ 2aGf , (11)

where E is the Young modulus and Gf is the fracture
toughness. The first term is the elastic energy released
by the crack and the second term is the surface energy
needed to separate the crack surfaces apart. As in nucle-
ation theory, we have a competition between a bulk and
a surface term leading small cracks to shrink and large
cracks to grow. The boundary between these two regimes
is controlled by the applied stress so that a crack length
a becomes unstable at a stress

σ =

√
2EGf

πa
. (12)

Now consider an area L2 with a set of independent random
cracks whose lengths are distributed according to given
probability density function p(a) and cumulative distri-
bution P (a) (see Fig. 3B). The probability distribution
that the largest crack is larger than a is given by EVT

PN (a) � 1 − exp[−ρV P (a)], (13)

where ρ ≡ N/L2. For an exponential crack distribution,
equation (13) becomes a Gumbel distribution [36]

PN (a) = 1 − exp[−ρV exp(−a/ac)], (14)

where ac is the characteristic scale of the crack length
distribution. Combining equations (14) and (12), one can
derive the survival distribution as

SL(σ) � 1 − e−ρL2 exp(
σ0
σ )2 , (15)

where σ2
0 ≡ 2EGf/πac, known as the Duxbury-Leath-

Beale (DLB) distribution [51], which is not an asymptotic
distribution of EVT, converging eventually to the Gumbel
distribution [47].

Large scale simulations of the RFM with a pre-existing
exponential crack distribution indicate that the survival
distribution is indeed well represented by the DLB distri-
bution [47]. This suggests that the asymptotic distribution
for fracture of weakly disordered media is the Gumbel dis-
tribution. This observation may have little practical rel-
evance since convergence is extremely slow and for finite
systems the Gumbel distribution does a bad job in fitting
the distribution tails. The general validity of the DLB dis-
tribution for fracture is intriguing issue that needs to be
confirmed for different kind of disorders and loading con-
ditions.

3.5 Size effects in notched samples

A very common experimental setting to study size effects
involves a specimen containing a pre-existing notch. Fail-
ure in this case is determined by the competition between
the deterministic stress enhancement at the tip of the
notch and a random contribution due to structural dis-
order [52]. For large notches disorder is considered a small
perturbation, defining a FPZ around the crack tip, where
all the damage is confined (see Fig. 4A). For quasi-brittle
materials, however, the size of the FPZ may not be negli-
gible when compared to the system size and the problem
may become subtle.

As discussed above, the standard approach based on
LEFM considers the stability of the notch against failure
is given by the Griffith’s criterion for the critical stress
(see Eq. (12)). A scaling law for the size-effect has been
proposed by Bazant for quasi-brittle materials [15], intro-
ducing in the Griffith expression an additional length-scale
ξ due to the presence of a FPZ

σ = Kc/
√

ξ + a0, (16)

where a0 is the linear size of the notch and Kc ∼ √
EGf

is the critical stress intensity factor. Equation (16) implies
that in the large notch limit ξ/a0 � 0 one recovers LEFM
scaling, in which the strength is inversely proportional to
1/

√
a0, while for a vanishing external flaw size a0 → 0,

the average strength remains finite.
Using numerical simulations of disordered fracture

models, such as the random fuse model [53] or more com-
plex bond or beam model [54], it was possible to check the
validity of equation (16) in controlled conditions. These
simulations show that equation (16) is correct for large
notches and allows to connect the lengthscale ξ with the
size of damage pattern ahead of the notch (see Fig. 4B).
For small notch sizes, however, the law crosses over to a
size dependent form ruled by EVT. The cross-over takes
place at a scale ac which can be obtained equating the
strength prediction of equation (16) and the scaling of a
sample without a notch σ0(L, D) (see Fig. 4C). One can
condense these results into a single scaling theory, valid
for all a0, stating that

K2
c

σ2
= ξ + a0f(ac/a0) (17)

where the statistical scaling function f(y) is character-
ized by

f(y) �
{

1 if y � 1
y if y � 1 (18)

and the cross-over scale is given by

ac � (Kc(D)/σ0(L, D))2 − ξ(D). (19)

3.6 Fracture of fractal media

A large effort in the literature has been devoted to under-
stand the relation between the crack morphology or the
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Fig. 4. (A) In quasi-brittle materials the length of the notch a0 is correcred by the size of the fracture process zone ξ. (B) The
fracture process zone can be revealed in simulations of the random fuse model by averaging over disorder (see Ref. [53]). (C) The
size effect law predicted by linear-elastic fracture mechanics is corrected by disorder. The results are from simulations of the
random fuse model reported in reference [53].

material microstructure and the resulting size effects. As
discussed above, crack fronts exhibit a self-affine struc-
ture and it has been attempted to use this property to
derive the size dependence of the strength [55]. A popular
argument interprets size effects as the result of internal
fractal structure of the material [56,57] leading to heated
debates on its validity in the engineering community [40].
While no material is fractal on long lengthscales, it would
be still be interesting to characterize more rigorously the
scale dependence of the failure properties of general frac-
tal objects. To this end, however, one should abandon the
appealing but misleading idea of a continuum mechanics
on fractals and work instead with a discrete system.

The mechanics of a fractal cannot be treated by re-
placing the Euclidian dimension with the fractal dimen-
sion in the relevant equation. This can be understood by
a simple example: in homogeneous materials the stress is
defined by the total applied force F divided by the section
S ∼ L2, where L is the linear size of the sample, and scales
σ ∼ F/L2. Now consider a fractal material with fractal di-
mension D, whose section would scale as S ∼ LD−1. One
could argue that the real internal stress should now scale
as σ ∼ F/LD−1 and predict a power law size effect in
terms of the nominal applied stress [56]. Stress in a frac-
tal, however, is carried only by a limited number of bonds
that is not directly related to the fractal dimension. To
disconnect the fractal percolation cluster for instance it is
enough to break one “red” bond, rather than a number of
bonds scaling as LD−1.

Many size effect fractal theories rely on the idea that
if the crack surface is fractal then the scaling of the
stress needed to create it should derive from its morphol-
ogy [56]. As we discussed above, fracture surfaces are not

self-similar but self-affine and ignoring this fact leads to
spurious results as discussed in reference [58]. Apart from
this, the general argument is still questionable: failure usu-
ally occurs when a crack becomes unstable and grows. The
stress causing failure in principle does not know about the
future path taken by the crack in its dynamics. So it is not
obvious that there is any relation between the morphology
of the fracture surface and the stress needed to create it.
This is supported by numerical simulations of disordered
fracture models, where the failure strength and the related
size effects are not related with the final self-affine crack
geometry but rather with the exponential distribution of
crack sizes observed at peak load [47].

4 Strain bursts and size effects
in microplasticity

4.1 The challenges of microplasticty

Plastic deformation is a paradigmatic problem of multi-
scale materials modeling. Relevant processes range from
the small scales where atomic arrangements are of cru-
cial importance for its deformation properties, up to
macroscopic scales where deformation instabilities man-
ifest themselves in the form of catastrophic failure. The
crucial question of how defect and microstructural proper-
ties link to the macroscopic constitutive equations of con-
tinuum mechanics is still not completely answered. Very
often it has been assumed that the transition from dis-
crete defects and microstructural features to continuum
mechanics can be accomplished by studying single defect
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Fig. 5. (A) Micron-scale sample deform irreversibly with large plastic strain bursts that can be seen from the sample surface.
(B) The stress-strain curve has a staircase-like character with random stress and strain jumps. (C) The simplest model for
micron-scale plasticity considers a cross section of the sample populated by gliding edge dislocations with positive and negative
burgers vectors. Strain bursts are due to the breakup of blocked configurations such as walls or dipoles.

models or by performing simple homogenization proce-
dures – as soon as one is well above the scale of the rel-
evant defects, straightforward averaging of their individ-
ual dynamics should lead to the smooth laws envisaged
by continuum mechanics. This conventional viewpoint
has been recently challenged by experiments investigating
deformation fluctuations under conditions where plastic
deformation was expected to occur in a smooth and stable
manner. For instance, in plastically deformed micron-sized
crystals, internal dislocation avalanches lead to jumps in
the stress-strain curves (strain bursts) whereas in macro-
scopic samples plasticity appears as a smooth process (see
Fig. 5) [59]. In addition, the deformation tests reveal in-
triguing size effects: the plastic yield stress is found to
increase as the sample size is decreased [2]. The gener-
ality of this result is confirmed by compression tests on
micropillars fabricated from a variety of materials with
different crystal lattice structures, including Ni [2,60,61],
Au [62,63], Cu [64], Mo [65,66], and LiF [67], supporting
the now popular paradigm that smaller is stronger [2]. No-
tice that size effects are not observed in macroscopic sam-
ples that are thus well described by continuum mechanics.
Strain burst are indirectly revealed also in macroscopic
samples by acoustic emission measurements [68–70] al-
though the deformation curves are apparently smooth [71].
In the materials science literature there is still, however,
no consensus on the mechanisms underlying size effects
and strain bursts in micropillars, although several the-
oretical arguments have been proposed. Some theories
are based on statistical effects [72–74] while others em-
phasize the role of sample boundaries and dislocation
sources [62,63]. Despite these interesting developments, a
quantitative theory explaining the scaling of the strength
and the strain bursts is still lacking.

4.2 Discrete dislocation dynamics
simulations: two dimensions

Several interesting features of microplasticity can be
reproduced by discrete dislocation dynamics (DDD)
simulations, in which one follows the dynamics of an
ensemble of interacting dislocations. The simplest DDD
model can be thought to represent the cross section of a
single-slip oriented crystal where N point-like edge dislo-
cations glide in the xy plane along directions parallel to
the x axis (see Fig. 5C). Dislocations with positive and
negative Burgers vectors bn = ±bx̂ are assumed to be
present in equal numbers, and the initial number of dislo-
cations is the same in every realization. An edge disloca-
tion with Burgers vector bx̂ located at the origin interacts
by a long-range force with a dislocation in r = (x, y). As-
suming an overdamped dynamics, in which the dislocation
velocities are linearly proportional to the local forces, the
velocity of the nth dislocation along the glide direction

χvn = bn

[
σe +

∑
m �=n

σxy(rnm)

]
, (20)

where χ is the damping constant,σe is the external stress,
rnm ≡ rn − rm the relative position vector of dislocations
n and m, and the the relevant component of the shear
stress for edge dislocations is given by

σxy(r) =
Gb

2π(1 − ν)
cos θ cos 2θ

r
, (21)

where G is the shear modulus and ν the Poisson ratio.
Periodic boundary conditions are usually imposed in the
direction of motion (i.e. the x axis) but often along both
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directions. In order to take correctly into account the long
range nature of the elastic interactions, the stress should
be summed over an infinite number of images. When the
distance between two dislocations is of the order of a
few Burgers vectors, linear elasticity theory breaks down.
In these instances, phenomenological nonlinear reactions,
such as the annihilation of a pair of dislocations, describe
more accurately the real behavior of dislocations in a crys-
tal. Typicall, one annihilates a pair of dislocations with
opposite Burgers vectors when the distance between them
is shorter than a cutoff ye [69,75].

The dynamics of interacting dislocations displays in-
teresting glassy relaxation properties [75–78]. The strain
rate initially decays as a power law but at larger times it
crosses over to a linear creep regime (i.e. to a plateau sig-
naling a steady rate of plastic deformation) whenever the
applied stress is larger than a critical threshold σc, or, oth-
erwise, to decay exponentially to zero [75]. These results
suggested that a possible interpretation of dislocation dy-
namics in terms of the general jamming framework pro-
posed to encompass a wide variety of non-equilibrium soft
and glassy materials [79]. Most of these physical systems
consist of various types of soft particles closely packed into
an amorphous state. At high densities, the relative motion
of these particles is drastically constrained and, as a con-
sequence, soft and concentrated materials usually respond
like elastic solids upon the application of low stresses. One
then says that the system is jammed, since it is unable to
explore all the available configuration space. On the other
hand, they flow like viscous fluids above a yield stress
value σy .

The particle density is usually a control parameter in
the jamming transition, but not for dislocations. Equa-
tions (20) and (21) are invariant if we rescale all lengths
in proportion with the mean dislocation spacing 1/

√
ρ,

all times in proportion with 1/ρ, and the externally ap-
plied stress in proportion with

√
ρ [80,81]. Hence if a set

of dislocations with density ρ0 is jammed at a stress be-
low σ0, then a set with dislocation with density ρ will be
jammed below σc =

√
ρ/ρ0σ0. In other words, contrary to

other jamming systems dislocations should jam at all den-
sities [82]. An exception to this rule may come from the
fact that the critical stress vanishes: Recent numerical sim-
ulations explored the variation of the critical stress with
system size and provided preliminary indications that it
may indeed decrease to zero as the number of dislocations
diverge [78]. Further work is needed to clarify this issue.

4.3 Discrete dislocation dynamics simulations: three
dimensions

DDD simulations reveal dislocation avalanches with a
power law distribution of energies due to the breakup
of jammed configurations [69]. In two dimensions, these
metastable configurations are essentially walls or dipoles.
Avalanches in more realistic configurations can be ob-
tained in three dimensional dislocation dynamics simu-
lations [83–85]. These kind of models are extremely chal-
lenging from the computational point of view and for this

reason one has access only to relatively small sample sizes.
On the other hand, they provide a more faithful repre-
sentation of the dynamics of interacting dislocations, in-
cluding the formation of junctions, the multiplication of
dislocation through Franck-Read sources and the effect of
the boundary conditions on the elastic stresses. The scal-
ing features of the avalanches distribution persist in three
dimensions, with an exponent τ � 1.5. In addition, the ex-
ponent is the same for single slip and multiple slip, does
not depend on the presence of cross-slip and on the loading
mode. The value of the cutoff to the power law distribution
changes with the loading mode [83]. The robustness of the
exponent value is supported by the agreement between ex-
periments and model. In addition, the value is very close
to the typical mean-field prediction τ = 3/2. Under the
guidance of the numerical simulations, it is possible to ob-
tain the scaling of the cutoff of the avalanche distribution,
given by

s0 =
bE

L(Θ + Γ )
, (22)

where E is the Young modulus, L is the linear size of the
system, Θ is the hardening coefficient and Γ is the stiff-
ness of the traction machine when the sample is loaded un-
der strain control [83]. Using this expression it is possible
to collapse all the simulated and experimental distribu-
tion into a single master curve [83]. This general scaling
law was later confirmed by other independent three di-
mensional dislocation dynamics simulations [84] and by
experiments in Mo and Au micropillars [65].

These findings have important implications for defor-
mation processes on the micron scale. As a consequence of
the stochastic and intermittent nature of the deformation
process, the deformation behavior of a small enough sam-
ple can no longer be predicted in a deterministic sense. As
the maximum avalanche strain increases with decreasing
system size, the stochastic heterogeneity of deformation
becomes more and more pronounced, Hence it may be dif-
ficult, on the micron and sub-micron scale, to control the
results of plastic forming processes. This problem could
be relevant in the processing of micron-scale components
such as bonding wires in chips.

4.4 Yielding and depinning

The analysis reported in the previous sections shows that
there are intriguing analogies the dynamics of an assembly
of interacting dislocation moving on different glide planes
and the depinning of elastic manifolds in disordered me-
dia. This analogy has been reformulated into a more rigor-
ous framework by Zaiser and Moretti [86], employing the
formalism of continuum plasticity. They consider a single
slip system (along the x direction) and describe the plastic
strain by a field γ((r)), assuming it is independent of the z
coordinate. These conditions closely represent the geom-
etry of the dislocation dynamics model discussed above.
Employing a general viscoplastic constitutive law, one can
write

∂γ

∂t
= C[σe + σint(r, γ) + σp(r, γ)], (23)

http://www.epj.org


Page 10 of 12 Eur. Phys. J. B (2012) 85: 329

where σe is the externally applied stress and σp is the
effective pinning stress due to immobile threading dislo-
cations or by solute atoms. The internal stress induced
by the local fluctuations of the strain field γ(r) can be
computed in the framework of linear elasticity. In Fourier
space, it is given by σ̃int ∝ γ̃kk2

xk2
y/|k|4. Equation (23) is

this equivalent to the one describing an elastic manifold
with non-local stiffness moving in a disordered landscape
under the action of an external force. In this sense, we
can explain the occurrence of avalanches in crystal plas-
ticity as the signature of a yielding transition, which in the
particular case considered here can be mapped into a de-
pinning transition. If this mapping is correct, a size effect
would stem naturally from finite size scaling as in other
depinning transitions [87]. Namely the depinning stress in
a finite systems should scale as

σc(L) = σc(∞) + A/L1/νF S (24)

where νFS is the finite size scaling exponent [87].
Finally, it is important to emphasize here the crucial

role played by work hardening in the yielding transition.
In most materials dislocation proliferation effectively in-
creases the stress necessary to sustain dislocation motion.
This effect is usually modeled by increasing the flow stress
or equivalent by introducing an additional back-stress
σB = −Θγ, where Θ is the hardening coefficient. Thus
if we ramp up the external stress the back stress keeps the
effective stress σe + σB close to the critical yield stress,
introducing a cutoff in the avalanche distribution that is
controlled by Θ [83,88]. While we can expect that the
yielding transition represents a useful theoretical frame-
work to understand plastic flow in general, the detailed
implementation of the program for a generic multiple slip
system of interacting curved dislocation appears to lie well
beyond the present possibilities.

4.5 Amorphous plasticity

Strain burst and size effects are not restricted to crystal
micro-plasticity: compression of amorphous micro-pillars
yields very similar phenomenology [89]. Atomistic simu-
lations of plastically deformed amorphous materials have
shown intermittent strain bursts similar to those observed
in crystal plasticity [90–93]. In amorphous materials such
as glasses, pastes or foams, in the absence of an under-
lying crystalline lattice, plasticity cannot be described
in terms of dislocations. It is usually assumed, however,
that macroscopic deformation can be considered as a suc-
cession of localized reorganizations at some microscopic
scale [94]. These rearrangements give rise to quadrupolar
stress redistributions that are analogous to those occur-
ring when a dislocation slips forward by one lattice step.
It is interesting to notice that models very similar to equa-
tion (23) have been used to described amorphous plastic-
ity [95,96]. It is therefore conceivable that universality in
plastic strain avalanches may exist for crystals and amor-
phous materials.

From a mesoscopic perspective the yield surface of an
amorphous material results from the joint optimization of

local intrinsic disorder and elasticity. Based on a power-
ful analogy, it has been suggested that strain localization
in the perfect plasticity (PP) limit can be related to the
problem of finding the minimum energy (ME) surface in
a disordered medium [97]. This is a generic optimization
problem in disordered media in which one searches for
the path that minimizes the sum of a given local random
variable that is called energy. The conjectured equivalence
between PP and ME comes from the observation that, at
the yield point, it is not possible to find an elastic path,
along which the stress could increase, spanning the sample
from end to end. Recently, it has shown [98] that PP and
ME are not exactly the same but the universality class of
the problem is the same. In particular, the size effects and
the yield stress distribution are very similar [98,99]. These
models are very simplified and whether similar optimiza-
tion induced scaling can explain real size effects remains
to be tested.

5 Outlook

In this colloquium I have tried to highlight some gen-
eral problems in fracture and plasticity where a statistical
physics approach lead to promising results and improved
understanding. The past decades have witnessed an in-
creasing numbers of contributions in this field and it is
difficult to review all the relevant literature. I therefore
focused on three problems that have benefited in the past
by statistical mechanics methods and still present several
intriguing unresolved issues.

Thanks to the development of refined theories for in-
terface depinning and detailed experiments on a variety
of materials, we now understand the roughness of fracture
surfaces much better than three decades ago, when their
self-affine nature was first revealed. Yet, some aspects of
the problem still remain to be elucidated. For instance, we
still do not have a quantitative theory for the short-length
scale fracture regime where one observes multi-scaling.

Understanding size effects and strength distributions is
one of the key problems in fracture that has been studied
by statistical methods for more than a century. Improve-
ment in computational power now allow for large scale
numerical simulations of disordered fracture models with
impressive statistical sampling. This will allow more and
more to discriminate between different statistical theories
and guide the establishment of more reliable safety factors
for large structures.

Finally, in the last decade there has been a flurry
of activity in micron-scale plasticity. This is becoming
a very important field with relevance for future micro-
technologies. Statistical physics thinking is more and more
useful to interpret the huge amount of experimental and
numerical simulations data.

In conclusions, the mechanics of materials represents
an extremely exciting playground for statistical physicists.
In this colloquium, I have discussed a few examples but
more problems exist and wait to be explored.
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96. M. Talamali, V. Petäjä, D. Vandembroucq, S. Roux, Phys.

Rev. E 84, 016115 (2011)
97. S. Roux, A. Hansen, J. Phys. II France 2, 1007 (1992)
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