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ABSTRACT: We describe a new method for peptide sequencing based on the
mapping of the interpretation of tandem mass spectra onto the analysis of the
equilibrium distribution of a suitably defined physical model, whose variables
describe the positions of the fragmentation sites along a discrete mass index.
The model is governed by a potential energy function that, at present, we
derive ad hoc from the distribution of peaks in a data set of experimental
spectra. The statistical−physics perspective prompts for a consistent and
unified approach to de novo and database-search methods, which is a
distinctive feature of this approach over alternative ones: the characterization of
the ground state of the model allows the de novo identification of the precursor
peptide; the study of the thermodynamic variables as a function of the
(fictitious) temperature gives insight on the quality of the prediction, while the
probability profiles at nonzero temperature reveal, on one hand, which
fragments are more reliably predicted. On the other hand, they can be used as a
spectrum-adapted, a posteriori score for database search. Results obtained with two different test data sets reveal a performance
similar to that of other de novo and database-search methods, which is reasonable, given the lack of an aggressive optimization of
the energy function at this stage. An important feature of the method is that it is quite general and can be applied with different
choices of the energy function: we discuss its possible improvements and generalizations.

Tandem mass spectrometry is widely used in the field of
biochemical analysis of unknown samples of protein,

generally embedded in an automated high-throughput pipeline,
that yields huge amounts of data, requiring an automated
spectrum-interpretation tool. In principle, a tandem mass
spectrum contains all the necessary information about the
peptide it comes from. In practice, reading out the sequence is
always a difficult task, since each spectrum is the statistical
outcome of the microscopic rules governing the energy transfer
and stochastic fragmentation of the precursor peptide under
collisions, in the presence of “noise” sources of different kinds.
Ab initio predictions of the spectrum on the grounds of just the
physics of molecular collisions are practically impossible, so that
the identification of the precursor sequence involves the use of
ad hoc score functions to rate the match between the
theoretically predicted spectrum and the experimental one.
Most often, the search space is limited to the sequences of
known proteins (“database search” approach), which is more
practical and efficient but also more limited, than de novo
methods, inferring the peptide from just the information
contained in the spectrum. Remarkably, a central problem is
related to assessing the reliability of the prediction, mainly
related to the prediction of false positives, i.e., wrong sequences
with high scores. This is true also for database-search methods,
especially in the case of proteins of low abundance, yielding few
good spectra and reducing the possibility of cross-validation of
the predictions. Indeed, it is estimated that just 20% of MS/MS
spectra is successfully identified by database-matching algo-

rithms.1 Unfortunately, since the scores are not rooted on a
sound modeling of the fragmentation process, the probability
distribution of the score values cannot be derived from first
principles and involves strong approximations. Thus, several
methods have been proposed to score the value of the
predictions, in a postprocessing of the sequencing process,2

either recurring to empirical, database-dependent estimates of
error rates or searching a suitably designed decoy database, to
estimate the probability that the resulting score could be
obtained by a match to a random peptide. Other approaches
train a classification algorithm on spectra of known identity,3 to
distinguish correct and incorrect matches. As pointed out by
Kim and co-workers,2 the need for a decoy database is a
consequence of the inability to solve the spectrum matching
problem: Given a spectrum S and a threshold T for a scoring
function, find the probability that a random peptide matches S
with score greater than T. This quantity is quite difficult to
estimate correctly and is usually replaced by the false discovery
rate, which is not a characteristic of the individual spectrum but
rather an average property, i.e., the fraction of incorrect guesses
among all identifications with score greater than T.
The situation is perhaps even worse for de novo

interpretation, where all the score functions are tested against
a test bed of spectra, whose interpretation is considered reliable.
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Thus, while indications of the average precision and recall of
the predictions can be given for each method, there is not a
robust way to determine how reliable a particular interpretation
is. Moreover, the sequence space explored is much huger, and
there is no decoy database to learn a null-hypothesis
distribution. In general, the best scoring sequence might not
be the correct one. A common feature to all sequencing
algorithms is that they report an ordered list with the best
ranking solutions, that is not granted, though, to include the
correct one, for any reasonable length of the list.
Another characteristic of de novo methods is the use of

dynamic programming algorithms in the search for the best and
suboptimal solutions,4 that can be seen as a special case of a
max-sum algorithm for graphical models. Indeed, the problem
can be cast as a graphical model where the graph is either a
“spectrum graph”5 or a mass-array,6 while the score-function to
maximize is simply the sum over the contributions of each N-
terminal and C-terminal (“prefix” and “suffix”) peptides, with
their related fragment ions, to the matches between theoretical
and observed peaks. Even if in the following we are not going to
use the techniques developed for graphical models, we take
advantage of the connection between max-sum and sum-
product algorithms on graphical models and the equilibrium of
a corresponding statistical mechanics model,7 to propose a
statistical−physics approach to the de novo interpretation
problem.
In physical terms, using the negative score as an energy, we

can say that de novo algorithms find the minimal energy state
(“ground state”), or zero-temperature equilibrium, in the
appropriate sequence space, with suboptimal solutions
representing the first “excited states” of the energy landscape.
In statistical mechanics, a way to explore a system in the vicinity
of its ground state consists of raising its temperature and
studying the equilibrium solution, as more and more excited
states come into play. The equilibrium state will not give us the
individual details (in this case, the sequence) of the excited
states, but the averages of the state variables can be related to
the probability of finding a residue at a certain position,
informing us on the regions where the interpretation is more
robust and prompting us for the implementation of a score for
database search. Moreover, “high” values of the average energy
and entropy at low temperature could reveal unreliable
interpretations, related either to spectra with a few good
matches or to high-entropy energy landscapes, with many
alternative sequences at a small gap from the ground state
one.Thus, the introduction of an artificial temperature and the
study of the resulting thermodynamic equilibrium could also
provide some valuable internal indication of the quality of the
interpretation, in a sense analogous to the false positive rate
mentioned above.
In order to implement such scheme, we need, first, a proper

way to map the problem of spectra interpretation on that of
finding the thermodynamic equilibrium of a suitable physical
system and, second, an efficient way to perform calculations. In
the following, we will deal with both issues: we will introduce a
discrete unidimensional system, whose states encode all
possible amino-acid sequences of appropriate mass. We will
state the general form of the energy function of the model in
terms of just on-site and next-neighbors interaction. We will
calculate exactly the partition function of the model as well as
some thermodynamic observations, resorting to a transfer-
matrix technique, and we will discuss how the equilibrium
results can be mapped back to MS/MS spectra interpretation

and how to assign a significance value to the resulting sequence
prediction.

■ METHODS
We look at an experimental MS/MS spectrum Σ as the result of
stochastic fragmentation of an ensemble of identical parent
peptides P*, generating “true” peaks, overlapped with the extra
peaks produced by R, a noise source. Σ, R, and P*, should be
considered as random variables, with different probability
distributions.
To estimate the probability that a proposed sequence P is

indeed the true precursor ion P*, we formulate the problem of
spectra interpretation as a Bayesian inference problem. As
detailed in the Supporting Information, we can write the
probability p(P|Σ,R) of a parent peptide P given a spectrum Σ
and the noise source R as:

|Σ = Σ|
Σ

p P R p P R
p P
p

( , ) ( , )
( )
( ) (1)

where we have assumed that R is independent from Σ and P, so
that its a priori probability p(R) simplifies out. Interpreting the
spectrum will be equivalent to finding the peptide sequence P′
that maximizes the probability 1:

′ = Σ|P p P R p Parg max[ ( , ) ( )]
P (2)

(We neglect the denominator, independent from P.) P′ is the
best prediction we can give of the true precursor ion P*. In the
above expressions, the a priori probability of sequence P, p(P),
is unknown, but some reasonable assumptions can be made on
it (see Supporting Information). However, the key points here
are as follows: first, how to define a physical model that
encodes all the sequence space compatible with the given
parent mass; second, how to estimate the probability p(Σ|P,R)
to observe the spectrum Σ given a sequence P and a source of
statistical noise R and how to encode such information in the
model, and third, how to explore the configuration space
efficiently to find P′. Let us start with the first issue. The
position of a MS/MS peak informs on the m/z ratio of the
corresponding fragment but does not depend on its sequence.
We can use this fact to avoid the book-keeping of a
combinatorial number of possible sequences and to define a
physical system whose variables carry information on the
accumulated mass and charge at each site, as well as some other
quantities that we will need to completely characterize the
parent peptide. As in ref 6, we define a mass array ofM + 1 sites
from 0 to M, the discretized monoisotopic mass of the parent
peptide (see Supporting Information for details). Any sequence
of total mass M will map onto a set of “fragmentation sites” ν in
the lattice, corresponding to the masses of the prefix fragments
ending at each peptide bond. We introduce a list of all the
residues that can appear in a peptide sequence (possibly
enlarged to include post-translational modifications of the
residues, if needed), together with their characteristic numbers
ω(a), ( ∈a ), that specify their discretized mass, maximal
charge, and list of neutral losses they can undergo. The pattern
of characteristic numbers is specific to each residue (apart from
the degeneracy Ile-Leu; see Table S1 in the Supporting
Information).
We map the possible amino-acid sequences to model

configurations by introducing, for each site, a variable r ∈ [0,
rmax], where rmax is the biggest mass in . We enforce (as an

Analytical Chemistry Article

dx.doi.org/10.1021/ac4005666 | Anal. Chem. 2013, 85, 4884−48924885



energy constraint, see eq 4) that the only values allowed at ν are
rν = rν−1 + 1 or rν = 0, the latter just holding when rν−1 = m(a)
− 1, for some residue ∈a ; see Figure 1. The above rule,

together with the boundary conditions r0 = rM = 0, generates all
possible sequences of total mass M, with rν = 0 at each
fragmentation site ν. To locate the corresponding theoretical
peaks, we need to know, at each ν, the maximal charge of a N-
terminal ion (qν

N) and a C-terminal one (qν
C), according to the

charge of the precursor peptide and the number of K, R, and H
residues, as well as the number and kind of neutral losses they
can present. Moreover, a binary variable πν = 0, 1 will be used
to implement enzyme-specific cleavage rules: in the following,
we will specify to the most common case of trypsin.
The constraints on the charge, neutral losses, and πν can also

be written in terms of the variables at sites (ν − 1) and ν (see
Supporting Information for details). Basically, they imply that,
if rν > 0, the other state variables retain the same value of
position (ν − 1): the system remembers the state it had at the
previous site. If rν = 0, a new residue is “started” at ν, and the
other state variables are updated according to the pattern of
characteristic numbers ω(a) of the residue a terminating at ν.
The above variables inform us on where, along the mass lattice,
the fragmentation can occur and what kind of fragments can
emerge, while we introduce a variable ξν

si = 1, 0 according to
whether the ion of type si was produced at ν or not. Collecting
all the state variables introduced above in a global one, σν, the
set of all σν, together with their constraints, will describe all the

possible parent peptides and specify the relevant information to
produce the corresponding fragmentation and ionization
patterns.
The behavior of the model will be ruled by the Boltzmann

probability associated to each configuration ϕ = {σν, ν = 0, ...,
M}

ϕ|Σ = β ϕ− − Σp T Z e( , ) H1 ( , )
(3)

where β = 1/T and H(ϕ,Σ) is the energy function of the model.
The partition function Z = Σϕe

−βH(ϕ,Σ) involves a sum over all
the states of the model and thus over all the sequences with
total mass and charge as the parent peptide. All the relevant
observables can be derived from Z, so that its evaluation
represents the major challenge. We write the energy as: H =
Σν = 1

M Hν−1,ν, where

σ σ σ= Σ +ν ν ν ν ν ν ν ν− − −H H H( ; ) ( , )1,
1

1,
2

1 (4)

Here, the two-sites term of the energy Hν−1,ν
2 implements the

constraints representing the allowed transition from a site to
the following one: it is zero if the values of σν−1 and σν are
compatible and infinity otherwise, thus strictly prohibiting
forbidden configurations (see Supporting Information). The
connection to the experimental spectrum is contained in the
single-site term H1, that represents the energy of a
fragmentation in ν and depends only on the fragmentation
pattern allowed by the state variable σν at site ν and the quality
of the match of the resulting ions to the experimental spectrum
Σ. The simple form of eq 4, with just on-site and next-
neighbors interactions, rules out the possibility of accounting
for the effects that distant residues may have on the
fragmentation at ν or of excluding that different ions match
the same peak. On the other hand, it allows the exact
calculation of the sequence that best matches the spectrum,
which should coincide with the true parent if H is sufficiently
good. Thus, eq 4 represents a trade-off between accuracy of the
score-function and accuracy of the exploration of the
configuration space.
In order to find an explicit expression for Hν

1 of eq 4, we have
to deal with the second key issue: how to estimate the
probability p(Σ|P,R) to observe the spectrum Σ given a
sequence P and a source of statistical noise R. If we had a good
physical characterization of the fragmentation process from first
principles, we could associate a probability to any fragmentation
and compare the predicted distribution of intensities with the
experimental spectrum. The lack of such a suitable ab initio
characterization prompts us for a different approach, where
information, collected from a database of spectra, is used to
derive an ad hoc energy potential; the experimental spectrum
then acts as an “external field” driving the system toward the
most-likely parent sequence. We will use the latter approach
here, which is common to all de novo methods: for any given
sequence P, we will calculate its fragment ions and will match
the experimental peaks to such theoretical ions, rewarding the
associations according to an ad hoc defined energy (depending
on peak intensities and positions) derived from the analysis of a
database of reliably interpreted spectra (the “learning data set”
LSET, in the following; see Supporting Information for its
definition and for calculation details). We finally obtain:

∏ ∏ ∑|Σ ∝
ν ξ

ξ

∈ ∈ =

−

ν ν

ν νp P R e( , ) ( )
P s P

H s

( ) ( ) 0,1

( , )

s

s

i
i

i
i

(5)

Figure 1. Schematic representation of mapping onto the physical
model: a proposed sequence (middle) is laid down on the discretized
mass axis; its peptide bonds correspond to the possible fragmentations
sites, from which several N-terminal and C-terminal ions are produced.
These ions can match peaks of the true parent (in red), noise peaks (in
black), or no peak at all of the experimental spectrum (top):
accordingly, an energy is associated to the configuration. Bottom: The
actual model configuration corresponding to the first residues in the
sequence: the rν-variables, in red, show a sawtooth profile, increasing
up to the residue mass and then dropping to zero. For simplicity, the
other dynamic variables, accounting for charge, neutral losses, etc., are
not reported. Notice that the state σν at each site does not inform on
the sequence of the prefix (or suffix) peptides; however, the best
sequence is recovered by the calculation of the average probabilities, eq
10.
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where ν ∈ P( ) indicates the possible fragmentation sites of
peptide P (i.e., the peptide bonds, in our framework) and

∈ νs P( )i are the different kinds of ion species (si = y, b, etc.)
that theoretically can be generated at ν.8 We have introduced:

ξ μ δ δ

δ

= +

+ −

ν ν ξ ν

ν
̅

ν
H s h s I s

h s

( , ) ( ( , ( ))

(1 ) ( ))

s
I s

M

I s
M

i ,1 ( ) i i

( ) i

si
i

i

i (6)

where μ is an energy cost, associated to the a priori probability
to produce a fragment ion of any kind, that will be chosen to
reproduce, on average, precursor peptides of the correct length
(see Supporting Information); δI(si) = 1 if there is an
experimental peak sufficiently close to the position of the
theoretical fragment si, and δI(si) = 0 otherwise; hν

M(si,I(si)) and
hν
M̅(si) are energies associated to the matching of the ion si,
produced at ν, to its “image peak” I(si) in the spectrum or to
the lack of matching peaks for si, respectively. They are written
as:

= −ν
νh s I s

p s I s

p R I s
( , ( )) log

( : ( ))

( : ( ))
M

i i
i i

i (7)

= − ⌀ν ν
̅h s p s( ) log ( : )M

i i (8)

where pν(X : I(si)) is the probability that the peak I(si) was
indeed produced by X = si or by noise X = R, and pν(si : ⌀) is
the probability that the ion si produced at ν did not yield a peak
in the spectrum. Such probabilities are obtained from the LSET
(see Supporting Information) by considering the distribution,
in the (mass,intensity)-plane, of the peaks corresponding to
each type of ion products and to noise. Notice that the
expressions of the energies eqs 7 and 8 correspond to the
negative of the score usually adopted in de novo methods (e.g.,
refs 5 and 6), so that our approach can be applied also with
different definitions of the probabilities. Comparing eq 3 with
eq 5, it can be seen that the former reproduces the latter with T
= 1 and the identification

∑σ ξΣ =ν ν
σ

ν ν
∈ ν

H H s( , ) ( , )
s

s1

( )
i

i

i

(9)

which completes the mapping between the interpretation
problem and the physical model.
We are finally left with the problem of exploring the

configuration space to find the one representing the best parent
sequence. In the standard approach, a sequence probability is
calculated as a product of independent single-node factors, as in
eq 5, that score the match between theoretical fragments and
the spectrum. In practice, instead of dealing with the product of
probabilities, it is handier to use the sum of their logarithms as a
score and to find the precursor sequence as the one maximizing
such sum. In our approach, the log-probabilities acquire an
independent status, as energies of a physical system, and
coincide with the logarithm of the probabilities only for T = 1.
At any T, the equilibrium state of the physical system will be an
ensemble of ground state and excited states, encoding the
optimal and suboptimal sequences, populated according to the
Boltzmann probability eq 3. As T approaches 0, such an
ensemble collapses into just the microstate of minimal energy,
thus recovering the same solution as the standard approach. At
higher temperatures, several model configurations will be
populated; the average properties of this ensemble will translate
into a sequence profile of the most likely sequences, instead of a

list of suboptimal sequences; the latter profile will be useful to
explore the possible alternative interpretation and assess the
goodness of the prediction. Despite that the number of terms in
the sum is exponential in M, a transfer-matrix formalism (see
Supporting Information) allows one to calculate the partition
function Z exactly, as well as other relevant equilibrium
quantities, like the average energy U = ⟨H⟩, coinciding at T = 0
with the energy of the most likely peptide; the entropy S =
−Σϕp(ϕ) ln p(ϕ), giving a measure of how many sequences are
“populated” at a given temperature. The most likely sequence
can be found resorting to the quantities

= ⟨Δ ⟩ν ν ν−p a( ) a
1, (10)

which represent the probability that a residue of type a ends at
ν (see Supporting Information): at any temperature, the best
sequence P′ is recovered by starting on the last site of the lattice
ν = M, looking at the most likely residue terminating there and
tracking back the position ν of the preceding fragmentation; the
process is iterated in backward steps until reaching ν = 0. At T
= 0, the pν(a) is different from zero just at the fragmentation
sites of the lowest energy sequence, while at higher temper-
atures several configurations, corresponding to suboptimal
sequences, will be populated, and pν(a) will be different from
zero for an increasing number of positions ν and species a. This
will generate a probability profile, allowing the identification of
the most reliable fragmentation sites.
An interesting quantity related to the profile is the “sequence

entropy”

∑= −
ν

ν ν
=

S p plog( )s
M

0 (11)

where pν = Σapν(a) is the probability that ν is a fragmentation
site.
To test the de novo method, we apply it to the spectra of the

test set (TSET1) introduced in ref 5 and later used in ref 9
composed by 280 spectra of double charged peptides of up to
1400 Da, produced with tryptic cleavage. For each spectrum, a
reliable interpretation is available.5 We identify and filter out
isotopic peaks by the same procedure applied to the LSET.
When greater statistics is needed, we refer to the Extended
Learning data set (ELSET, see Supporting Information). We
compare, at the level of the fragmentation sites, the predicted
best sequence and the predicted probability profile with the
provided parent sequence, that we refer to as the “true
sequence” P* in the following. We proceed as follows: for the
profiles, we define the total “predicted positive” fraction as the
sum of all the probabilities eq 10, at all sites: PP = ΣνΣapν(a),
and analogously, the “true positive” fraction (i.e., the fraction of
predicted fragmentation sites that are correct) as

= ∑ ∑ν ν∈ * p aTP ( )P a( ) , where *P( ) is the set of fragmenta-
tion sites of the true sequence P*. The “real positive” value RP
is simply the number of residues of P*. Moreover, we define the
corresponding quantities for the predicted best sequence P′:
PP′ is the length in residues of this sequence and TP′ is the
overlap ′ ∩ *P P( ) ( ) between the sets of fragmentation sites
while the real positive number RP′ is the same as before.
To quantify the goodness of the profile, we compute the

precision Π = TP/PP (the fraction of predicted fragmentation
sites that are correct), the recall Γ = TP/RP (the fraction of true
fragmentation sites that are correctly predicted), and their
harmonic mean, the F-value: Φ = 2Π Γ/(Π + Γ) Analogously,
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we define the precision Π′, recall Γ′, and F-value Φ′ for the
predicted best sequence by the use of TP′, PP′, and RP′.
To perform the database search, we build up the target

database by digesting the SwissProt database strictly according
to the tryptic rules, allowing at most one missing cleavage. For
each peptide x in the database, we calculate:

∏=
ν

ν ν
∈

p x p a( ) ( )
x

db

( ) (12)

where aν is the residue of x ending at ν and pν(a) is defined in
eq 10 and calculated with our program (in the following: T-
novoMS). Whence, for the sequence P1 in the target database
that maximizes pdb(P), we calculate the “z-score” for spectrum
Σ:

σ
Σ = ̅ −z

e e P
( )

( ( ))

e
T

1

(13)

where e(P) = −log(pdb(P))/L(P), with L(P) being the length in
residues of sequence P and e ̅ and σe being the average and
standard deviation of the distribution of e in the database.10

Then, we generate a decoy database, reversing the protein
sequences and applying the same procedure as above,11

calculating zD(Σ). We apply the method to the same set
TSET1 as before and also to a database of 18169 spectra1213

(TSET2), calculating the false discovery rate (FDR) and
coverage of the predictions. Given a threshold z0, we define the
FDR as FDR = (do + 2db)/(db + tb + to), where db (“decoy
better”) and tb (“target better”) are the number of spectra that
get a better z-score in the decoy database or in target database,
respectively, and do (“decoy only”) and to (“target only”) are
the number of spectra that get a score above the threshold z0
only in one of the databases.14 For TSET1, whose “true” parent
sequences are known, we also apply an alternative definition of
FDR, based just on the target z-score zT: for a given z0, FDR′ =
FP/PP, where PP is the number of spectra Σ with zT(Σ) > z0
and FP is the number of spectra whose true precursor sequence
does not coincide with the best in the database, yet zT > z0.
Both for the de novo and database-search approaches, we also
check the effects of a prefiltering of the spectra, performed by
selecting six peaks in each window of 100 Da and discarding the
others as noise.6

■ RESULTS
Low-Temperature Regime: Peptide Identification. The

state of the system at T = 0 provides the predicted parent
sequence but is difficult to study due to computational
numerical divergences. We verified that T = 1 is sufficiently
low to ensure that the minimal energy state is clearly
identifiable. We compared the results of the algorithm with
other popular de novo sequencing algorithms, such as
NovoHMM,9 Lutefisk,15,16 Pepnovo,5 and MS-novo.617 For
every spectrum in TSET1, we compare the inferred sequence
with the “true” one deposited in the database, computing
precision Π′, recall Γ′, and F-value Φ′; then, we average them
over all the spectra.18 The results in Table 1 show that the
performance of the model is comparable to that of the common
alternative de novo softwares. For instance, the F-value, which
combines precision and recall and is 1 only if the model
reproduces all and only the correct fragmentation sites, is
essentially the same as that of MS-Novo. It is interesting to
notice that the correct estimate of the precursor mass is critical
for performance and is more relevant than a noise prefiltering

of the spectrum, performed as described in Methods. The mass
error is due to the discretization of the mass, that involves some
truncation of the true residues masses, yielding a sequence-
dependent cumulative effect that can cause a unit shift in the
parent mass (see Supporting Information).

Temperature Dependence and Quality Checks. Figure
2 and Figure S2 of the Supporting Information show the

probability profile pν(si) of eq 10, obtained for a sample
spectrum of the precursor sequence ALAEHGIVFGEPK at two
different temperatures. These profiles are analogous to those
introduced in ref 19 with a different method. The probability of
a residue ending at a certain site is 1 or 0 for T approaching 0,
and at low T, just a reduced number of states contribute, which

Table 1. Average Precision Π′, Recall Γ′, and F-value Φ′ of
the Match between the Predicted and “True” Parent
Sequence, for Different Algorithmsa

model Π′ Γ′ Φ′ n

Lutefisk 0.717 0.664 0.688 43
PepNovo 0.691 0.665 0.676 109
NovoHMM 0.786 0.778 0.781 12
MS-Novo 0.767 0.695 0.727 19
T-novoMS 0.713 0.700 0.705 27
T-novoMS-p 0.734 0.719 0.726 15
T-novoMS-M 0.747 0.732 0.739 0
T-novoMS-p-M 0.755 0.740 0.747 0

aThe last column shows the number of wrongly estimated precursor
masses. In boldface are the results for our method. We report also the
results obtained for T-novoMS upon prefiltering the spectrum (-p) or
forcing the mass of the theoretical sequence as an input (-M), as an
ideal case.

Figure 2. Probability profiles at different temperatures, corresponding
to a high quality prediction (Φ = 0.8 at T = 1) for a sample spectrum.
The height of the bar at ν represents pν(s), and its label is the residue s
to which it refers. Bars exceeding 1 represent the true parent sequence,
as deposited in the database. Notice that a correct fragmentation is
missed (Leu2) at T = 1, yielding a wrong peptide length. Also, the first
two fragmentations sites are wrongly predicted, causing a wrong
interpretation E4Q of the following fragmentation. At lower
temperatures, this features is even more evident (see Supporting
Information). At T = 2, all the fragmentation sites of the true sequence
are recovered with nonzero probability, but the ground-state sequence
still dominates. Notice that the profile suggests which fragmentations
are more reliably predicted. At higher temperatures (not shown), the
equilibrium configuration is dominated by entropy and no interesting
information can be extracted from the equilibrium state.
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allows an easy readout of the best sequence. However, the
probability profile, for T > 0, contains the contribution of every
sequence in the conformation space, and upon increasing the
temperature, alternative fragmentations appear. Also, the higher
energy available allows one to overcome the cost μ in eq 6 of
increasing the number of residues, yielding longer precursor
peptides on average.
The existence of predictions with very different quality, as

measured by the F-values Φ or Φ′, proposes the challenge of
recognizing a good prediction from a bad one. Table 1 provides
information on the average quality of the predictions but not on
the quality of an individual one. However, the possibility to
tune the temperature to extract information about other low
energy states, describing alternative sequences, can provide us
with valuable tools to assess the quality of the prediction.
Therefore, we look for some thermodynamic quantities
correlating with the F-value, that can be used as a predictor
of the latter, and analyze ELSET (see Supporting Information),
to get a better statistics. We have found that the quantity that
best correlates with the F-value is the “sequence entropy” eq
11, that informs us on the number of alternative sequences
having an energy close to the minimal one and affects the
goodness of the interpretation. Figure 3 shows the distribution

of the experimental spectra according to their entropy and F-
value Φ, calculated for all the doubly charged spectra from the
learning data set. The value of the correlation coefficient tells us
there is a linear trend in the data, even if the distribution is
quite broad: at low values of the entropy, this is related to the
existence of some spectra for which the best solution is very
stable and nevertheless wrong, which can be attributed to a
limitation of the design of the energy function. Despite these
limitations, important information on the quality of the
prediction can be extracted from the data of Figure 3. For
instance, we can select Φ0 = 0.8 as a threshold for “good”
predictions and see how the spectra with entropy below (or
above) a given threshold are classified according to this
criterion.

Table S5 in the Supporting Information reports several
indicators of the relationship between sequence entropy and
prediction F-value. We see that only at very low entropies Ss < 1
we are able to single out good predictions with a high reliability,
but the coverage is low (only 10% of the good sequences
present such a low entropy). On the other hand, predictions
with Ss > 5 are of poor quality 89% of the times. Such results
are not yet sufficient to provide a definite knowledge of the
value of the prediction but are indeed a first step toward the
definition of an intrinsic quality indicator of the peptide
identification, a feature that is missing in other de novo
approaches. Future developments will aim at improving the
energy function, to have a less disperse distribution and a shift
toward higher values of the F-value.
On the other hand, the information contained in the

probability profile allows us to determine which fragmentations
are more robustly predicted (i.e., maintain a high probability
upon increasing the temperature). Figure 4 reports the

dependence of the precision of the prediction on the
fragmentation-probability threshold (i.e., the number of
correctly predicted fragmentation sites over the total number
of predicted sites with probability over the threshold), for two
different temperatures, for the ELSET and TSET1. As it may be
expected, at both temperatures, sites ν with higher probabilities
are more likely to correspond to correct fragmentation sites.
However, the precision increases upon raising the temperature,
as well as the dependence on the threshold: the possibility to
explore alternative regions of the sequence space reveals which
fragmentation sites are less reliably predicted. Eventually, every
probability profile will loose its significance when the
temperature is high enough that the entropy dominates over
the energy (see Figure S3 in the Supporting Information). We
cannot propose a well-posed recipe for the choice of the
optimal temperature, that will be, in general, spectrum
dependent: in the following, we will work at T = 2 on an
empirical basis, leaving a more rigorous analysis for future
developments.

Figure 3. Correlation of the symbol entropy Ss and the quality
measure F-value Φ, at temperature T = 1; the latter is a sufficiently low
temperature to allow one to identify the best precursor sequence but
already has a reasonable population in alternative conformations to
give information about the low-lying structure of the solution space.
The precursor mass is calculated from the true sequence. Data from
the 7839 spectra with Q = 2 of the ELSET (correlation coefficient r =
−0.648).

Figure 4. Dependence of the precision Pr = STP/SPP of the predicted
fragmentation sites on the probability threshold p0, calculated at T = 1
and T = 2 for the data set TSET1 and ELSET, with noise-prefiltering.
Here, STP = ΣΣ∈SETTP(Σ) and SPP = ΣΣ∈SETPP(Σ), where SET is
either TSET1 or ELSET, PP(Σ) is the number of fragmentation sites
ν, in the profile for spectrum Σ, whose fragmentation probability is pν
> p0, and TP(Σ) is the number of the correctly predicted
fragmentations sites, upon comparison with the true parent of Σ.
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T-novoMS as a Database Search Tool. The main reason
why de novo sequencing methods perform worse than
database-search ones is that in the former case the sequence
space explored includes all possible sequences, most of which
will not correspond to real protein sequences. We may ask
therefore to what extent the efficiency of T-novoMS will
increase when applied to the reduced sequence space of a
database. Different than with other tools, T-novoMS provides a
probability profile that can be quickly matched against each
peptide in the database, associating the score eq 12 to it. Table
2 reveals that T-novoMS is able to retrieve correctly 84% of the

sequences corresponding to the spectra in TSET1 and recover
90% in the first three positions, performing only slightly worse
than MASCOT,20 despite the fact that 49 out of the 280 “true
peptides” are nontryptic in some way (according to the strict
tryptic rules we impose in the interpretation; see Supporting
Information).
However, in general, the value of the probability score pdb(x),

eq 12, is not sufficient to discriminate a good prediction from a
bad one: the best ranking sequences in the database for two
different spectra could get the same score, but this does not
imply that both identifications are correct (or wrong). Thus, it
is necessary to associate a quality indicator to the prediction:
after considering some candidates, we have seen that the z-
score, eq 13, shows the best performance. The z-score
measures, for each spectrum, how odd the best sequence is
in the database in comparison to all the others, according to the
distribution induced by the probability profile. Figure 5 shows
the ROC curves obtained with T-novoMS upon varying the z-
score threshold, for TSET1 and ELSET, together with the
corresponding ones from MASCOT, upon varying the e-value
threshold. T-novoMS yields a better curve than MASCOT for
ELSET, which is not really surprising, since ELSET is an
extension of the learning set. On TSET1, MASCOT performs
better, but the curves are quite close, confirming the results of
Table 2.
Table S6 in the Supporting Information reveals that a cutoff

z0 = 6.27 yields a FDR < 1%, with a coverage of 45%: almost
half the spectra in TSET1 are identified with less than 1%
probability of error. However, we cannot assume that the above
value of z0 is valid in general, for unrelated spectra from
different data sets, since the probability score distribution of the
sequences in the database will depend on the spectrum. Hence,
we cannot extend the above findings, on the relationship
between FDR and z0, to predict the FDR of truly unknown

spectra. In those cases, a valid alternative is to select the
threshold z0 from a comparison with a decoy database, as
explained in Methods.
Figure 6 shows the relation between the values of the FDR,

obtained upon varying z0, and the number of spectra that are

identified with z > z0 in the target database, for TSET2. We plot
both the FDR calculated as specified in Methods, according to
the definition of ref 14 and that calculated according to the
more standard definition, FDRst. Also, Figure 6 reports the
corresponding curves obtained with MASCOT, upon varying
the significance threshold, which affects the number of
identifications above the “identity threshold” and the
“homology threshold” in both the target and decoy databases.
In this case, we can only calculate FDRst. The inset of the figure
gives the detail of the most interesting region FDR < 0.1. We
first observe that FDR from ref 14 provides a better curve than

Table 2. Frequency of the Assignment the “True” Precursor
Peptides to the Best Ranks, According to Our Method T-
novoMS (at T = 2, with Noise Prefiltering) and MASCOT,
among a Peptide Databased Derived from Swiss-Prota

rank T-novoMS MASCOT

1 236 245
2 10 6
3 2

>3 4
aIn T-novoMS database search, sequences differing by I↔L are
considered the same. In 14 cases, T-novoMS assumes a wrong parent
mass, and in the other 14 cases (all corresponding to nontryptic
sequences), it assigns a null probability to the “true” sequence. In 29
cases, we were not able to find the position of the “true” sequence in
the list reported by MASCOT.

Figure 5. True positive rate (or recall) vs false positive rate for TSET1
and ELSET. The closer the curve to the upper left corner, the better:
FPR = 0 and TPR = 1 corresponds to all and only correct
identifications.

Figure 6. False discovery rate vs number of spectra identified above
the threshold, with T-novoMS and MASCOT. For T-novoMS, FDR
refers to the definition given in Methods, and FDRst = ND/NT, where
ND and NT are the number of spectra in the decoy and target
database with a z-score z > z0; the curves are obtained upon varying z0.
For MASCOT, FDRst = ND/NT, where ND and NT are the number
of spectra identified in the decoy and target database with a score
exceeding the identity threshold value (MIT) or the homology
threshold (MHT). Inset: detail of the most interesting region at FDR
< 0.1.
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FDRst, with smaller values of FDR at a given number of hits.
This is also true for TSET1, for which we have found that FDR
agrees with FDR′, calculated from the knowledge of the true
parent peptide (see Methods and Figure S5 in the Supporting
Information). The two curves almost overlap in the most
interesting region at FDR < 10%; yet, their difference can still
be relevant at FDR < 1%. The inset shows that the curves
obtained with T-novoMS are very close to that obtained with
MASCOT Identity Threshold, which provides a slightly bigger
number of hits at a given value of the FDR. The curve obtained
with MASCOT homology threshold improves the number of
hits, at a given FDR, of a factor of around 2 with respect to T-
novoMS results.

■ CONCLUSIONS
Mapping the problem of peptide sequencing onto the study of
the equilibrium behavior of a physical system allows the
construction of a natural combination of a de novo and
database-search tool. The quality of the predictions of T-
novoMS is similar to that obtained with other de novo methods,
and it could probably be improved, by further refinements of
the learning database and the energy function, as well as by the
introduction of immonium fragments, and of a more realistic
description of tryptic (or other enzyme) constraints. The
introduction of post-translational modifications is straightfor-
ward and just involves the extension of the residue “alphabet”
(Table S1 in the Supporting Information) to include them.
A crucial feature of the method is the possibility to associate

a probability profile to prefix (and suffix) masses in a natural
and precise way; the former can then be used to estimate which
fragmentations are more reliably predicted. Moreover, such
profiles can be used as an accurate, spectrum-specific score, to
fish out the correct sequence from a peptide database.
A test with the same data set used for de novo prediction, as

well as a much huger one, reveals that the performance of our
method is not far from that of MASCOT, one of the most
common database-search tools. It is important to stress that our
approach not only allows a prediction of the most likely parent
sequence (either de novo or by database search) but also
prompts for the design of intrinsic quality assessment of the
predictions (even if at a probabilistic level), in the spirit of the
“spectral dictionaries”.21 We have found that the “sequence
entropy” correlates with the quality of the de novo prediction
and can give indications on the latter, even if just in a statistical
sense. This is a first example of how the exploration of the
“thermodynamic properties” of each spectrum, allowed by the
statistical−physics perspective, can provide a spectrum-specific
insight on the quality of the interpretation, instead of relying on
indicators of the average performance. For the database-search
prediction, we have found that the quality of the interpretation
increases with the z-score, even if at the moment we cannot
establish a general quantitative relation between them from first
principles, so that we need a comparison with a decoy database
to establish the value of the predictions.
At present, T-novoMS does not outperform alternative de

novo or database-search software, but we think that this is
mainly due to the design of the energy function, rather than to
the approach itself. Indeed, at this stage, we were more
interested in proving the capabilities of the method, rather than
in tuning a score function for the best performance. A different
characterization of the phenomenological distributions, a
softening of the “tryptic” constraints that now strictly rule
out combinations of neighboring residues corresponding to

missing enzymatic cleavages, and a precursor-mass dependent
choice of the μ parameter, are just a few examples of the
optimizations that can be attempted in the future refinements
of the energy function. Moreover, this statistical−mechanics
approach will be valid not only for such refined functions but
also for a whole class of different energy functions, of the form
given by eqs 4 and 6. Hence, our proposal establishes the basis
of an alternative approach to the interpretation of MS/MS
spectra, combining de novo and database-search methods in an
unified framework, where important insight can be gained from
the well established conceptual tools and techniques of
statistical physics.
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