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ABSTRACT: Graphene deposited over a trench has been studied in
the context of nanomechanical resonators, where experiments indicate
adhesion of the graphene sheet to the trench boundary and sidewalls
leads to self-tensioning; however, this adhesion is not well
understood. We use molecular dynamics to simulate graphene
deposited on a trench and study how adhesion to the sidewalls
depends on substrate interaction, temperature, and curvature of the
edge of the trench. Over the range of parameters we study, the depth
at the center of the sheet is approximately linear in substrate
interaction strength and temperature but not trench width, and we
explain this using a one-dimensional model for the sheet configuration.
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Nanoelectromechanical systems (NEMS) have demonstra-
ted utility in problems from signal processing to studying

phonon mediated mechanical processes.1,2 A promising ma-
terial for NEMS is graphene, which is both stiff and strong.3,4

Over the past decade, considerable experimental work has been
done to design and improve resonators consisting of graphene
sheets suspended over trenches.5−9 The mechanical resonance
frequency of such resonators implies they are subject to
tension, which is generally accepted to be caused by adhesion of
the sheets to the substrate sidewalls.10−12 However, questions
have been raised about whether the depth to which the
graphene adheres is consistent with the strain measured in the
devices or if the observed depth is an artifact of atomic force
microscopy on a flexible sheet.13 Resolving this issue is
important for understanding and controlling the pretension,
and hence operating parameters, of graphene nanoresonators.
Suspended graphene sheets are also a testing ground for aspects
of graphene physics such as wrinkling and rippling of graphene
sheets, and experiments on graphene sheets over trenches have
revealed, e.g., the possibility of pushing graphene strain
engineering beyond the limits of continuum mechanics.14

Numerical simulations offer the possibility of explaining the
role of substrate geometry and interactions for graphene
deposited over trenches or holes, but simulations to date have
typically treated the effect of the substrate adhesion as an
applied tension or clamping of the sheet edges.15−21 Where the
substrate is treated explicitly, adhesion has been induced
“artificially” by, e.g., folding the sheet so that it is constrained to
be in contact with a large area of the sidewalls.22,23

Here, we report simulations of graphene suspended over a
trench and explore how adhesion to the sidewalls depends on
interactions with the substrate, temperature, and, importantly,
substrate geometry in the form of a finite radius of curvature of
the trench edges. We find that adhesion is strongly promoted
by trench edge curvature so that even sheets deposited flat
adhere to the sidewalls and are thereby tensioned. Over the
range of parameters we study, the depth at the center of the
sheet is approximately linear in substrate interaction strength
and temperature, and we explain this using a one-dimensional
model for the sheet configuration.
We use the molecular dynamics package LAMMPS24 to

simulate a rectangular sheet of 43 × 15 nm2, or ∼24,000 atoms,
which interact with each other via an AIREBO potential.25 The
sheet is placed flat on a substrate that consists of a trench of
width 15 nm and infinite depth. The sheet and substrate
interact via a Lennard-Jones interaction directed radially from
the substrate surface, with strength ϵ = 0.04, 0.1, 0.2 eV and σ =
1 Å, values in the range of interactions between graphene and
SiO2 substrates.

26 To capture friction effects that prevent the
sheet from sliding indefinitely, its short ends are coupled
horizontally to their initial position by a harmonic coupling
with spring constant k = 0.0001 eV/Å. It was shown
previously27 that this is an adequate approximation for friction
with a rough substrate. Open boundary conditions are used.
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The substrate is frozen, which increases computational
efficiency and allows us to simulate a larger graphene sheet
than would otherwise be possible.
The rims of the trench are rounded slightly, for three

reasons. First, in general a trench etched in a substrate is not
expected to be atomically sharp. Second, the curvature ensures
the interaction between sheet and substrate varies smoothly
and can be calculated accurately.28 Third, as we show below,
the configuration of the sheet depends strongly on the radius of
curvature of the trench edges. In general and unless otherwise
stated, the radius of curvature is r = 1 nm.
The sheet is first relaxed from flat at T = 0 using LAMMPS’

built-in energy minimization routine. Finite-T simulations are
performed by slowly ramping up the temperature from a
starting point of the T = 0 configuration using a Berendsen
thermostat. After the temperature T has been reached we use a
Langevin thermostat with damping τ = 1 ps to keep the system
in a steady state while we measure average quantities. We have
also tested a reversed temperature protocol in which the sheet
is relaxed at T = 300 K and lowered onto the substrate, before
lowering the temperature gradually to T = 0 and find similar
outcomes in terms of sheet configurations and stresses, as
discussed in the Supporting Information. This indicates the
robustness of our results presented here.
Figure 1a shows typical configurations of a sheet with

adhesion characterized by ϵ = 0.04 eV. At T = 0, the sheet is
smooth apart from rippling at its long edges, and is adhered to
the trench edges, with a depth of ∼8 Å attained at the sheet
center. For context, this is equivalent to ∼5% of the pit width.
The edge rippling is consistent with that seen in previous
simulations and experiments on graphene ribbons.29,30 Along
the short axis, at T = 0 the sheet develops a low-amplitude
ripple of wavelength ∼15 nm, as shown in Figure S1. This is
consistent with continuum mechanics,31 which predicts wave-
lengths of order 10−20 nm for strains of order 0.1−1%. An
example of deposition at T = 0 is shown as a video in the
Supporting Information.
The primary effect we wish to study is the reduction in

adhesion with temperature. As T increases, the sheet becomes
rougher and attachment to the trench sides is reduced. The
effect of this on the time-averaged depth h of the sheet center is
quantified in Figure 1b. The depth varies smoothly with
temperature and no signs of a detachment phase transition are
observed, with h(T) approximately linear over a wide range of
T. Similar results are seen for the alternative cooling
temperature protocol, although h(T) deviates more pronoun-
cedly from linearity, as seen in Figure S2.
In addition, the slope of h(T) decreases as the adhesion

parameter ϵ increases, that is, for strong adhesion the effect of
temperature on detachment is reduced. Indeed, for ϵ = 0.2 the
change in depth over a 2000 K temperature range is ∼0.5 Å. To
first approximation, the slope of h(T) is linear in ϵ, as indicated
in Figure 1c where kBT has been rescaled by ϵ.
Temporal fluctuations of the sheet configuration are also

increased with temperature. Typical examples are shown as
videos in the Supporting Information. Figure 1d quantifies this
effect through the standard deviation of the time series of the
depth of the sheet center. For large temperatures, the scale of
fluctuations grows linearly with T, with faster growth for
systems with smaller adhesion ϵ. For the range of temperatures
we study, the largest fluctuations observed are on the scale of
1−2 Å, which is ∼20% of the mean depth of the sheet center.
In fact, for high temperatures, these observations can be

consolidated by rescaling the distribution of sheet depths by
kBT/ϵ, in which case the data collapse, as shown in Figure 1e.
This roughness and the observed fluctuations, in addition to

adhesion to the trench edges, give rise to stresses, which can be
calculated using the standard virial stress formula and a per-
atom volume of 15.72 Å3 for a hexagonal lattice with interatom
distance 1.42 Å and sheet thickness 3 Å. We characterize these
stresses in Figure 2a by the stress along the long axis σxx, time-
averaged in the steady state in a strip of width 10 nm in the
center of the sheet. The stress is tensile everywhere except the
trench and sheet edges where it is compressive. As temperature
increases and the sheet becomes rougher, the spatial
distribution of σxx reflects this, becoming less uniform, and
larger tensile stresses are seen.
σxx is the most important contribution to Tr(σ), as can be

seen by comparing the spatiotemporal averages of the two in
Figure 2b,c. At T = 0, the other normal stresses are

Figure 1. (a) Sample configurations of the sheet for adhesion
characterized by ϵ = 0.04 eV. As temperature increases, the sheet
roughens and detaches from the trench sides. (b) For stronger
adhesion ϵ, the sheet reaches lower depths at T = 0 and detaches more
slowly as temperature is increased. (c) The scaling of the change in
depth with temperature is approximately linear in ϵ. For comparison,
the predictions of the 1d model with ϵ = 0.04 eV are also shown. (d)
Standard deviation of the temporal fluctuations in the depth of the
center of the sheet, plotted against temperature. (e) For large kBT/ϵ,
distributions of the depth of the center of the sheet can be collapsed by
rescaling by kBT/ϵ.
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approximately zero, with a nonzero ⟨σxx⟩ due to stretching of
the sheet as it conforms to the trench walls. Indeed, ⟨σxx(T =
0)⟩ is approximately linear in ϵ. At low temperatures, stresses
are on the order of giga-Pascals, consistent with experimental
observations.10,11 At larger T the ϵ dependence of ⟨σ⟩ becomes
more complex. Large ϵ promotes adhesion of the sheet to the
trench walls and therefore stretching; however, for smaller ϵ the
sheet can fluctuate substantially as seen in Figure 1d,e, and
these fluctuations also cause stresses in the sheet. Similar results
are seen for the cooling temperature protocol, as seen in Figure
S3.
Our simulations reveal behavior that is approximately linear

in kBT/ϵ over a range of temperatures and adhesion strengths.
This suggests the underlying physics can be captured by a
relatively simple model, as we demonstrate below. The essential
idea behind our model is that at finite temperature, the effective
length of the graphene sheet is reduced from its T = 0 value,
due to thermal fluctuations in the local orientation of the sheet.
The change in depth of the center of the sheet with
temperature is then purely a geometrical effect.
We treat the sheet as a 1d chain pinned at the edges of the

trench. At T = 0, the chain will take a configuration that
minimizes its energy E, the sum of stretching, bending, and
adhesion energies. For simplicity, we assume the conformation
of the chain is as depicted in Figure 3a, that is, it conforms to
the circular substrate edge over some angle θ, and the detached
part of the chain forms a circular arc, with tangents matching
where the two arcs join. While the assumption of a circular arc
for the detached sheet is a simplification, for a suspended sheet
such as we study the arc of the detached part is shallow and we
do not expect a more realistic shape to have a substantially
different center depth.

The attached arc has a radius of curvature r and the detached
arc has radius of curvature R, which is constrained by

θ+ =r R l( ) sin( ) (1)

where l is the trench half-width. The configuration is therefore
fully characterized by the angle θ, with respect to which we
minimize E.
Because of symmetry we calculate the energy of half the

sheet
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where the first term on the RHS is the stretching energy, the
second is bending energy, and the last is adhesion energy. Y =
Y0w/L is an effective spring constant. Y0 = 350 N/m is the 2D
in-plane stiffness of graphene,32 w = 15 nm is the sheet width,
and L is its rest length, which at T = 0 is l. B = B0w is the
effective bending constant for our sheet with bending rigidity B0
= 1 eV. γ = ρwϵ is an effective adhesion constant, where ρ is the
area density of atoms that each contribute ϵ to the energy when
the sheet is adhered.
We minimize the energy numerically using the brentq

function in the SciPy Optimize package. The depth h is related
to θ by

θ

θ
θ

= + −

= −

h r R

l

( )(1 cos( ))

sin( )
(1 cos( ))

(3)

Figure 2. Tensile stresses in the sheet increase with temperature. (a)
Spatial distribution of the normal stress σxx, where x is the sheet long
axis, shows that it is tensile everywhere except at the trench edges
where it is compressive. Temperature-induced fluctuations increase the
magnitude of the stress and are quantified here for (b) σxx and (c) the
trace of the stress tensor, which have been averaged over the steady
state fluctuations of a strip of width 10 nm in the center of the sheet.
The colorbar has been clipped to the range [−2.5,2.5] GPa to make
details within the sheets clearer. In fact the stresses along the sheet
edges are compressive, with amplitude ∼5 GPa.

Figure 3. One-dimensional model of the partially adhered sheet. (a) In
the model, the sheet adheres to the substrate following an arc defined
by the angle θ; the two adhered sections are joined by a second arc
whose radius of curvature is determined by matching the tangent
vectors where the attached and detached parts meet. (b) Depth h of
the sheet center at T = 0, given by minimizing the energy (eq 2). (c)
Change in depth with temperature, for the adhesion strengths ϵ
studied in our simulations. (d) Increasing the radius of curvature of the
trench edge, r, promotes adhesion to the substrate. At T = 0, the 1d
model has a sharp transition at γ=r B/ /2c ; in our simulations of a
2d sheet the transition is smoothed.
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As shown in Figure 3b, while the absolute depth attained by the
chain is less than observed in our simulations, the order of
magnitude is correct as is the change in depth with ϵ. This is a
nontrivial point. For example, if we neglect bending costs and
treat the detached chain as a flat segment connecting two
adhered segments on vertical walls, then the depth h that
minimizes the energy is h = γ/(4Y), which in our sheet and
trench geometry is 0.4 Å for ϵ = 0.1 eV.
At finite temperature, the effective length of the chain is

reduced due to fluctuations. We model the effect of these
fluctuations by using the worm-like chain model to treat the
system as a semiflexible polymer with an energy cost for
bending and temperature-induced tendency to fluctuate. For a
worm-like chain subject to an aligning force f, the end-to-end
extension L is well approximated by33

= +
−

−
fP

k T
L
L L L

1
4(1 / )

1
4b 0 0

2
(4)

where P = B/kbT is the persistence length of the chain and L0 is
its contour length at T = 0. The force f arises from interactions
with the substrate and we take its magnitude from the
measured stress σxx in the sheet at T = 0, using a cross-section
area A = wt = 4.5 nm2. The effective length L calculated from
(eq 4) is then used as the rest length in the energy (eq 2), and
the new depth is calculated. As shown in Figure 3c, for the ϵ
values we study via simulation, the scaling of the change in
depth with temperature is approximately linear in ϵ. In addition,
as Figure 1c demonstrates, the agreement with simulations is
excellent.
At T = 0, the model predicts a transition in the adhesion

behavior of the sheet at a critical trench edge radius of curvature
rc, below which no θ ≥ 0 exists that minimizes the energy (eq
2), due to the bending cost of conformation overtaking the
corresponding adhesion energy gain. Taking the derivative of
eq 2 at θ = 0 gives γ=r B/ /2c . Simulations performed with
edge radii of curvature around rc show that this transition is
smoothed in the 2d sheet, as shown in Figure 3d. However, in
both cases it is apparent that a suitable choice of r is required to
see substantial adhesion of the sheet to the trench and for sharp
edges the sheet remains almost flat. Furthermore, as discussed
in the Supporting Information, similar results are seen for a
sheet that is thermalized at 300 K before deposition, indicating
that rounding of the trench edges is more important here than
slack introduced by wrinkling in the sheet.
An advantage of our 1d model is that it can be used to study

system sizes inaccessible to molecular dynamics. Importantly,
the 1d model reveals that, while the system behaves
approximately linearly in ϵ/kT, it is nonlinear in r and l. For
example, we have tested how the depth h of the sheet center
varies as the trench width l and sheet length L are
simultaneously increased at T = 0, for a sheet with width w =
1.93 μm (based on the system studied experimentally by Bunch
et al.5). We find the depth grows sublinearly with L and the
sheet attains depths of h ≈ 10 nm for micron-scale trenches
with r = 1 nm. This is important for applying our results to
large systems for two reasons. First, it indicates that the effect of
the finite radius of curvature r is applicable for all system sizes,
and second, the order of magnitude of h agrees with reports in
the literature of 2−15 nm for graphene over square and round
holes.10,11 We also study the effect of varying the radius of
curvature r. For a trench of width 1.1 μm and sheet width 1.93
μm, dimensions matching the system studied experimentally by

Bunch et al.,5 the calculated resonance frequency of the sheet in
the 1d model is 10−120 MHz for r between 0.5 and 1 nm (as
shown in Figure S5), values also in agreement with the
observations of Bunch et al., who report a resonance frequency
of 70.5 MHz.5

In conclusion, we have shown that adhesion of a graphene
sheet to trench sidewalls can be induced by curvature of the
trench edges, even when the sheet is deposited flat. This
adhesion is sufficient to generate tension in the graphene sheet
consistent with experimental measurements.
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