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The vast majority of network data sets contain errors and omissions, although this fact is rarely
incorporated in traditional network analysis. Recently, an increasing effort has been made to fill this
methodological gap by developing network-reconstruction approaches based on Bayesian inference. These
approaches, however, rely on assumptions of uniform error rates and on direct estimations of the existence
of each edge via repeated measurements, something that is currently unavailable for the majority of
network data. Here, we develop a Bayesian reconstruction approach that lifts these limitations by allowing
for not only heterogeneous errors, but also for single edge measurements without direct error estimates. Our
approach works by coupling the inference approach with structured generative network models, which
enable the correlations between edges to be used as reliable uncertainty estimates. Although our approach
is general, we focus on the stochastic block model as the basic generative process, from which efficient
nonparametric inference can be performed and yields a principled method to infer hierarchical community
structure from noisy data. We demonstrate the efficacy of our approach with a variety of empirical and

artificial networks.
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I. INTRODUCTION

The study of network systems of various kinds constitutes
a significant fraction of contemporary interdisciplinary
research in physics, biology, computer science, and social
sciences, among other disciplines [1]. This research is
motivated in large part by the surging availability of network
data during the past couple of decades, which describe the
detailed interactions among constituents of large-scale
complex systems, such as transportation networks, cell
metabolism, social contacts, the Internet, and various others.
Despite the widespread growth of this field, its relative
infancy is still noticeable in some aspects. In particular, even
though sophisticated and successful models of network
structure and function have been proposed, as well as
powerful data-analysis methods, most studies of empirical
data are performed without taking into account measure-
ment error. Most typically, real networks are represented as
adjacency matrices, sometimes enriched with additional
information such as edge weights and types, as well as
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various kinds of node properties, the validity of which is
simply taken for granted. But, as is true for any empirical
scenario, network data are subject to observational errors:
Parts of the network might not have been recorded, and parts
might be wrong. Although this problem has been recognized
in the past in several studies [2—11], the practice of ignoring
measurement error is still mainstream, and robust methods
to take it into account are underdeveloped. This practice is in
no small part due to the fact that most available network data
contain no quantitative error-assessment information of any
kind, thus preventing primary experimental uncertainties to
be propagated up the chain of analysis.

In this work, we formulate a principled method to
reconstruct networks that have been imperfectly measured.
We do so by simultaneously formulating generative models
of network structure—that incorporate degree heterogeneity,
modules, and hierarchies—as well as models of the noisy
measurement process. By performing Bayesian statistical
inference of this joint model, we are able to reconstruct the
underlying network given an imperfect measurement
affected by observational noise. Importantly, our method
works also when a single measurement of the underlying
network has been made and the noise magnitudes are
unknown, which means it can be directly applied to the
majority of network data without available error estimates. In
addition to this, our method is capable of extracting hierar-
chical modular structure from such noisy networks, thus
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generalizing the task of community detection to this uncer-
tain setting.

Our method is equally applicable when information on
measurement error is available, either as repeated measure-
ments or as estimated edge probabilities. For this class of
data, we construct a general model that allows for hetero-
geneous errors that vary in different parts of the network. We
show strong empirical evidence for the existence of this kind
of heterogeneity and demonstrate the efficacy of our method
to include it in the reconstruction.

Our method shares some underlying similarities with
well-known model-based approaches of edge prediction
[5,6] but is different from them in fundamental aspects. Most
importantly, model-based edge-prediction methods yield
relative probabilities of edges existing or not, given a
generative model fitted to the observed data. These relative
probabilities can be used to reconstruct a network, provided
one knows how many edges are missing or spurious. Our
method obviates the need for this information (which is, in
general, unknown) and yields not only a reconstructed
network but also the uncertainty estimate that must come
with it, via a posterior distribution over all possible recon-
structions. Thus, our method realizes the underlying prom-
ise of reconstruction that motivates most edge-prediction
methods, but in a principled and nonparametric way.

We form the basis of our reconstruction scenario on
Ref. [10], which defined a statistical inference method based
on multiple measurements of network data, but here we use a
different approach based on nonparametric Bayesian infer-
ence, combined with community detection. This approach
yields a more powerful method that, differently from
Ref. [10], can be applied also when the network data do
not contain any kind of primary error estimate, such as when
the edges and nonedges have been measured only once.

This work is organized as follows. In Sec. II, we
formulate our Bayesian reconstruction framework. In
Sec. I A, we present our measurement model, and in
Sec. II B, we illustrate the use of our reconstruction method
with some examples. In Sec. II C, we perform a detailed
analysis of the reconstruction performance of the method as
well as its use to provide estimates of various network
properties. In Sec. II D, we employ our approach to some
empirical network data without primary error estimates and
evaluate their reliability. In Sec. II E, we extend our method
to heterogeneous errors and use it to analyze network data
with multiple measurements. In Sec. III, we show how our
method can be extended to situations where the arbitrary
error estimates are extrinsically provided, and we finalize in
Sec. IV with a conclusion.

II. BAYESTIAN NETWORK RECONSTRUCTION

The scenario we consider is one where, instead of a
direct observation of a network A, we perform a noisy
measurement D that contains only indirect information
about A. The task of network reconstruction is then to

obtain A from D. The approach we take is to perform
statistical inference, where first we model the network
generating process via a probability

P(A]0), (1)

where 6 are arbitrary model parameters. The entire data-
generating process is then completed by modeling also the
noisy measurement

P(DIA, ¢), (2)

conditioned on the generated network A (the “true” net-
work) and some further parameters ¢. Given this general
setup, the reconstruction procedure consists of determining
A from the posterior distribution

paip) =D, o)

where

P(DIA) = / P(DIA. $)P()ddp 4)

is the marginal probability of the measurements D and

P(A) = / P(A[0)P(0)d0 (5)

is the prior probability for A, summed over all possible para-
meter choices, weighted according to their (hyper)prior pro-
babilities. The remaining term P(D) =, P(DJ|A)P(A)is
a normalization constant that corresponds to the total
probability—or evidence—for the observed measurement.
In the above, the probabilities P(0) and P(¢) encode our
prior knowledge (or lack thereof) about the network gen-
eration and measurement processes, respectively. With these
at hand, Eq. (3) assigns the probability of a given network A
being responsible for measurement D. Importantly, this
distribution defines an ensemble of possibilities for the
underlying network A that incorporates the amount uncer-
tainty resulting from the measurement. This procedure
contrasts with reconstruction approaches that attempt to
reproduce a single network, although within the above
framework we could also attempt to find the single most
likely reconstruction that maximizes Eq. (3), i.e., a maxi-
mum posterior point estimate. However, as we see below,
this is not the most appropriate point estimate, as it tends to
incorporate noise from the data, biasing the reconstruction.
Instead, we should consider the consensus of the full
posterior distribution, which can also give us an estimation
of uncertainty.

The above framework is general and can be used for any
kind of generative and measurement processes. Here,
we are interested in those that can be used to describe
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the large-scale modular structures of networks, character-
ized by the partition of the nodes into groups b = {b,},
where b; € {1, ..., B} is group membership of node i. The
simplest and most commonly used model in this context is
the stochastic block model (SBM) [12]

A|a) b Ha)b b l—a)b b) ij, (6)

i<j

where w,, is the probability of an edge existing between
nodes of groups r and s. Alternatively, we could also
consider a more realistic version called the degree-
corrected SBM (DCSBM) [13]:

KK/lbb .
e i (Kik A, h) i
PAxb)=]] ™ (M
ij*

i<j

where 1, controls the number of edges between groups r
and s and «; the expected degree of node i. This model
variant decouples the degrees from the group memberships,
allowing for arbitrary degree variability inside modules, a
feature often found to be more compatible with real
networks [14]. (Note that the DCSBM generates multi-
graphs with A;; € N, whereas the SBM above generates
simple graphs with A;; € {0,1}, as our framework
requires. In Appendix D, we amend this inconsistency.)
Using the above, we compute the marginal network
probability as

= PAb)P(b). (8)

with

P(Alb) = / P(A

integrated over the remaining model parameters, weighted
by their respective prior probabilities. However, although
Eq. (9) can be computed exactly [14], the complete
marginal of Eq. (8) cannot, as it involves an intractable
sum over all possible network partitions. Hence, instead of
computing directly the posterior of Eq. (3), we obtain the
joint posterior [15]

.b)P(k|b)P(A|b)dxdA,  (9)

P(DIA)P(A[b)P(b)

PA.b[D) = SR TR

(10)

which involves only quantities that can be computed
exactly, except P(D), which, as we shortly see, is unnec-
essary for the inference procedure. We do the above without
any loss, as the original posterior of Eq. (3) can be obtained
by marginalization, i.e.,

P(A|D) = ZP (A,b|D). (11)

This result means that, if we can sample from the joint
posterior P(A,b|D), we can compute any estimate § of a
network property y(A) (e.g., the clustering coefficient) over
the full marginal P(A|D) by averaging it over the joint
posterior, i.e.,

&=Zy Zy

The procedure we use to sample from the posterior
distribution is Markov chain Monte Carlo (MCMC).
We consider move proposals of the kind P(b’|A,b) and
P(A’|A,b) for the partition and network, respectively, and
accept the proposal according to the Metropolis-Hastings
[16,17] probability

. P(A',b'|D)P(A|A’",b")P(b|A’,b")
“““(1’ P(A.B[D)P(A'JA.5)P(b|A. >>’ (13)

which enforces detailed balance. If the move proposals are
ergodic (i.e., they allow every network A and partition b to
be proposed eventually), this algorithm will generate
samples from the posterior distribution P(A,b|D) after a
sufficiently large number of iterations (usually determined
by requiring that statistical properties of the chain, such as
average log-probability, become stationary). The ratio in
Eq. (13) can be determined exactly without computing the
intractable constant P(D) in Eq. (10), making this method
asymptotically exact. We give more technical details of our
MCMC procedure in Appendix B.

The above setup is still sufficiently general that it can be
used with any variant of the SBM. In particular, here we
make extensive use of the hierarchical DCSBM
(HDCSBM) [14,18], which differs from the DCSBM in
that a nested hierarchy of priors and hyperpriors is used in
place of the single prior P(4|b) for the connections between
groups. In this model, groups are clustered hierarchically
into metagroups, yielding a nested hierarchical partition
{b'}, where b' is the partition of the groups in level /. As
discussed in Refs. [14,18], this choice of structured priors
removes a tendency of noninformative priors to underfit
[19] and enables the detection of structures at multiple
scales while at the same time remaining unbiased with
respect to different types of mixing patterns. Its posterior
distribution is obtained in the same fashion, following the
framework above, simply by replacing b — {b'}.

In the following, whenever we mention that we sample
from the posterior P(A|D), it is meant that we sample from
the joint posterior P(A,b|D) and marginalize over b, as
described above. The same is true when using the hierar-
chical model; i.e., we sample from P(A,{b'}|D) and
marginalize over the hierarchical partitions {b'}.

P(A|D) = P(A.b|D). (12)
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The main difference from typical community detection
based on statistical inference is that here we are interested
in not only detecting modules in networks but also inferring
the network itself. Therefore, both the network and its
partition into (hierarchical) groups are inferred from indi-
rect data. As we see, the simultaneous detection of modules
offers a substantial advantage to the reconstruction task, as
it allows correlations among edges to inform it, which
means that we are able to perform reconstruction in
situations which would otherwise be impossible. But,
before we proceed, we need to model the measurement
process itself, as we do in the following.

A. Noisy network measurements

Here, we consider the scenario used in Ref. [10], where
the edges of a network are measured directly and repeat-
edly, but the process is noisy and potentially distorts the
network. In particular, we assume that for each node pair
(i, ) we perform n;; distinct measurements and record x;;
positive outcomes; i.e., an edge is observed. For each
observation, we have a probability p of observing a missing
edge (i.e., a false negative) and a probability g of observing
a spurious edge (i.e., a false positive), depending in each
case on whether the underlying network possesses or not an
edge (i, j). Thus, for each edge, the observation probability
is distributed according to a binomial distribution, with a
success rate that depends on whether an edge exists in the
underlying network, i.e.,

P(xij|niijij7pv 61)

=(27)K1—prnwrwwwwwl—quwr*w
L

(14)

Thus, the joint likelihood for the whole set of measure-
ments x = {x;;} is

P(x|n,A, p.q)
= Hp(xijlnij’Aij’pv q)
i<j
n<.
— [H( L )] (1 _ p)Tpé‘—TqX—T(l _ q)M—X—SJrT’
i<j \Xij

(15)

written in terms of the following summary quantities:

M= Znij, X = ZXU, (16)

i<j i<j
g = Zniinj’ T = ininj’ (17)
i<j i<j

where M is the total number of measurements (edge or
nonedge), X is the total number of observed edges, £ is the
total number of measured edges, and 7 is the total number
of correctly observed edges. [20] From these quantities, we
also identify the total number of false positives (spurious
edges) as X' — 7 and of false negatives (missing edges)
as E-T.

To proceed with our calculation, we need to specify the
degree of prior knowledge we have on the error rates p and
q. We can express this belief most naturally with a Beta
distribution:

P (1= p)!
Bla.p)

where B(x,y) =T(x)['(y)/T'(x +y) is the Euler beta
function, I'(x) is the gamma function, and likewise for
P(q|u,v), with hyperparameters y and v. As illustrated in
Fig. 17 in Appendix A, a value of @ = f# = 1 encodes a
maximum amount of prior ignorance with respect to p,
which is then uniformly distributed in the unit interval.
Conversely, values @ — oo and  — oo converge to a Dirac
delta function centered at a/(a+ ), amounting to a
maximum certainty for a particular value of p, and,
therefore, intermediary values of o and f interpolate
between these two extremes (and analogously for g with
1 and v), with which we can compute the integrated
likelihood

P(pla.p) = (18)

P(x|n,A,a,p,p,v)
=/?umAm4wwmﬁwwmwww

_ [H<nij>}5(5—7+a,7+ﬁ>

Xij B(a, p)
BX-T4+uy M-X-E+T+
« B a ) 28 (19)

The noninformative case a = =u =v =1 simplifies
further to

- [IC]() o (5

i<j
1

“Mor1 (20)
The above noninformative generative process can also be
equivalently interpreted as first choosing the number
of false positives X' —7 uniformly from the interval
[0, M — &] and then selecting them uniformly at random
from the possible set with ('=f) elements, and similarly
choosing the number of false negatives £ — 7 uniformly in
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the interval [0, ] and the false negatives from the set of
size (g_gT) = (;)

With the integrated likelihood in place, we can finally
complete the posterior distribution of Eq. (3) with
D = (n,x), which in this case becomes

P(x|n,A,a,p,u,v)P(A)
P(x )

For P(A), we use the SBM and sample A using MCMC
from the joint posterior P(A, b|n,x, a, B, u,v), as discussed
previously.

Even though we integrate over the error probabilities
p and ¢ in the above, we can nevertheless obtain their
posterior estimates by averaging from the above posterior

P(

v) =

(21)

P(pln.x,a.p,u.v)

=Y P(p

using the posterior for p conditioned on the network A,

.B)P(A (22)

) - pS—TJra—l(l _ p)T+,/)’—l

Pp T BE-T+aT+p)

(23)

and likewise for g with

X—T+/,t—1(1 _ q)M—X—€+T+/4—1

q
BX-T4+uM-X-E+T+v)

(24)

P(g|n,x, A, pu,v) =

In the following, we most often assume the noninforma-
tive case @ = f = v = u = 1, corresponding to the maxi-
mum lack of prior knowledge about the measurement
noise. In order to unclutter our expressions, if this is
the case, we simply omit those hyperparameters from
the posterior distribution, i.e., P(A|n,x)=P(A|n,x,a=1,
p=1lu=1uv=1).

1. Single edge measurements

As we increase the number of measurements n;; of each
pair of nodes, we should expect also to increase the
accuracy of the reconstruction, resulting in a posterior
distribution P(A|nr,x) that is very sharply peaked around
the true underlying network. Although this scenario is
plausible, and indeed desirable under controlled experi-
mental conditions, it is not representative of the majority
of the network data that are currently available. In fact,
inspecting comprehensive network catalogs such as the
Koblenz Network Collection (KONECT) [21] and the
Colorado Index of Complex Networks (ICON) [22] reveals
a very pauper set of network data that can be cast under this

setting of repeated measurements. On the contrary, the vast
majority of them offer only a single adjacency matrix
without quantitative error estimates of any kind. Needless
to say, this omission is no reason to assume that they do not,
in fact, contain errors, only that they have not been assessed
or published.

Here, we propose an approach of assessing the uncer-
tainty of this dominating kind of network data by interpret-
ing it as a single measurement with unknown errors rates,
using the framework outlined above. In more detail, we
assume that n;; = 1 for every pair i, j and that the single
measurements x;; € {0,1} correspond to the reported
adjacency matrix. The lack of knowledge about the under-
lying error rates p and g can be expressed by choosing
a = =u=rv =1, in which case it is assumed that they
both lie a priori anywhere in the unit interval. [23] At first,
we may wonder if this approach has any chance of
succeeding, since the lack of knowledge about the error
rates means that the network could have been modified in
arbitrary ways such that the true underlying network is
radically different from what has been observed. Indeed, if
we define the distance between measured and generated
networks,

dA,x) =

> Ay -

i<j

x| =(E=-T)+(X¥-T), (25)

which equals the sum of false negatives and false positives,
we have that, according to Eq. (20), the expected distance
over many measurements is

ZE:aAwﬂmﬂmA%:<g)/Z (26)

which is half the maximum possible distance of (%), which
might lead us to conclude that our noise model will
invariably destroy the network beyond the possibility of
reconstruction, regardless of its original structure. What
changes this picture is the fact that the posterior distribution
P(A|x,n) of Eq. (21) is, in fact, more concentrated on the
generated network than implied by the above and, ulti-
mately, depends crucially on our generative process P(A).
The first point can be made by assuming a fully random
generative model,

PA|lw) =

[[eti(1- ) (27)

i<j

which means that the true networks being measured are
assumed to be completely random, given a particular
density @. The full prior can be obtained by a noninforma-
tive assumption P(w) = 1, which yields

P(A) = / P(A]) P(w)dao (28)
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NN -!
=:<§) (ZS+£ (29)

with E =}, ;A;; = & being the total number of edges,
which is equlvalent to sampling to the total number of
edges from the interval [0, (5)] and then a fully random
graph with that number of edges. Combining this result
with Eq. (20) yields the posterior distribution, which can be
written as the product of two conditional probabilities:

P(Alx,n) = P(A

)P(T . Elx) (30)
with

-1

oG] e

E-T

P(A

corresponding to the uniform sampling of A with exactly
&€ — T false negatives and X' — 7 false positives, and

T <&)T < X)
E+DIG) -E+1]

with [...] being the Inverson bracket that equals 1 if the
condition inside it is true, or O otherwise, determines the
posterior probability of the number of false negatives and
false positives, up to a normalization constant. Although
this distribution decays for values of £ larger than 0, the
decay is slow with approximately 1/&, and, hence, on
average, the inferred networks A sampled from P(A|x, n)
will be dense, yielding large distances d(A,A*) if the true
generated network A* is sparse. Although the posterior
distribution of false negatives and positives resulting from
P(T,&lx) is not uniformly distributed in the allowed
interval, it is also not sufficiently concentrated to enable
any reasonable accuracy in the reconstruction, regardless
of how large the network is. What changes this situation
considerably is to replace the fully random model of
Eq. (28) by a more structured model. The key observation
here is that the modifications induced by the error rates p
and ¢ affect uniformly every edge and nonedge, and,
thus, with structured models, we can exploit the observed
correlations in the measurements x to infer the underlying
network A and, in fact, even the error rates p and g,
which are a priori unknown.

We illustrate this property by considering the non-
degree-corrected SBM, where networks are generated with
probability

P(T,Elx) (32)

PA|lw,b) = Hw,,,, (1= @y ) ™. (33)

i<j

The final likelihood for the measurements x in this case are
identical to an effective SBM, given by

P(x ®.b) =Y P(x|n.A.p.q)P(Alw.b)  (34)
A
= sz,.b,xi""(l - C‘)Zib,)l_x"’, (35)
i<j
where
=(1-p-qo,+q (36)

are the new effective SBM probabilities that have been
scaled and shifted by the measurement noise. Suppose, for
simplicity, that we know the true network partition b and
that the number of groups is very small compared to the
number of nodes in each group. In this situation, the
posterior distribution for @’ should be tightly peaked
around the maximum likelihood estimate @'

e
= 1 — —_ . = s N 37
(1-p-q)o,+q . (37)

where e, =3 x;;0), 0 ¢ is the number of observed
edges between groups r and s (or twice that for r = s) and
n, is the number of nodes in group . The joint posterior
distribution for p and ¢ is then asymptotically given by

b)

P(p,

cx/P(’x

/‘ (1= p= Q) +q—ers/ 1,1 Plwys|b)deo
r<s

«]]|0<

r<s

,b)P(w|b)dw

Crs/N,0y
efs/ s = "< 1] PO lP) (38)

l-p—gq

up to normalization, where [...] is again the Inverson
bracket. The constraints above imply that the inferred error
rates are bounded by the maximum and minimum inferred
connection probabilities, i.e.,

(39)
rs NN
ers
p <1 —max——. (40)
rs nrns

These bounds mean that, if we have not observed many
edges between groups r and s, this implies that ¢ could not
have been very large. If, instead, we do observe many edges
between these groups, then it means that the value of p
could not have been very large either [see Figs. 1(a)and 1(b)].
The inequalities of Egs. (39) and (40) hold for every pair
of groups r and s, but the values of p and ¢ are global.
Therefore, as long as the inferred SBM probabilities are
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FIG. 1. (a) Illustration of a hypothetical measured network,

with a priori unknown errors, but from which error estimates can
be made: The lack of edges between groups 2 and 3, 3 and 4, 2
and 4, and 1 and 3 implies that the probability g of missing edges
is likely to be low. Similarly, the large internal density of group 3
(which forms a clique of ten nodes) implies that the missing edge
probability p must be low as well. (b) How the network in
(a) would look for higher values of p and g. (c) The distribution
of marginal edge probabilities p;; between every node pair, for a
fit of the HDCSBM on the openflights data (see Appendix E),
measured with different values of the noise parameters (p, ¢). As
the noise magnitudes increase, the probabilities become less
heterogeneous and concentrate in narrower intervals. Hence, the
inference of broad connection probabilities from the data rules
out the existence of strong noise in the measurement.

sufficiently heterogeneous, they should constrain the
inferred error rates to narrow intervals—which also con-
strains the inferred number of false negatives and false
positives [see Fig. 1(c)]. [24] On the other hand, if the model
probabilities are homogeneous, the posterior distribution for
the errors is broad, and the quality of the reconstruction is
poor. Therefore, the success of this approach depends
ultimately on the observed networks being sufficiently
structured and of our models being capable of describing
them.

The above means that we have a better chance of
accurate reconstruction if our models are capable of
detecting heterogeneous connection probabilities among
nodes. A fully uniform model like the Erd6s-Renyi of
Eq. (28) (equivalent to a SBM with only one group)
exhibits the worst possible performance. The DCSBM,
on the other hand, should, in general, perform better than
the SBM, since it is capable of capturing degree

heterogeneity inside groups, which is a common feature
of many networks [13,14]. The HDCSBM [14,18] should
perform even better, since its tendency not to underfit
means it can detect statistically significant structures at
smaller scales.

Finally, it must also be noted that, when performing only
single measurements, there remains an unavoidable iden-
tification problem, where it becomes impossible to fully
distinguish a network that has been sampled from a SBM
with parameters @ and error rates p and g from the same
network sampled from a SBM with parameters @’ given by
Eq. (36) and error rates p = ¢ =0 (and, in fact, any
interpolation between these two extremes). This uncer-
tainty, however, is reflected in the variance of the posterior
distribution and serves as a worst-case estimation of the
error rates, which ultimately can be improved by either
incorporating better prior knowledge (e.g., via the hyper-
parameters @, f, v, and u) or performing multiple
measurements.

B. Empirical examples

Before we proceed further with a systematic analysis of
our reconstruction method, we illustrate its behavior with
some empirical data that are likely to contain errors and
omissions. We begin with the network of social associa-
tions between 62 terrorists responsible for the 9/11 attacks
[25,26]. The existence of an edge between two terrorists is
established if there is evidence that they interacted directly
in some way, e.g., if they attended the same college or
shared an address. Clearly, this approach is inherently
unreliable, as either investigators may fail to record
evidence or the evidence recorded may be simply erro-
neous. Nevertheless, although this potential unreliability is
acknowledged in Refs. [25,26], it is not assessed quanti-
tatively, and the data presented there are a single adjacency
matrix with no error estimates. Therefore, it serves as a
suitable candidate for the application of our reconstruction
method. When applied to this data set, our approach yields
the results seen in Fig. 2, which shows the marginal
posterior probability of each possible edge in the network,
in addition to the hierarchical modular structured captured
by the HDCSBM. Our method identifies the organization
into a few largely disconnected cells, typical of terrorist
groups. When ranking the potential edges according to their
marginal posterior probability, as shown in Fig. 2(c), we
have that all observed edges are more likely to be true edges
than any of the nonedges, indicating a fair degree of
inferred reliability. The observed nonedges have a proba-
bility substantially smaller than the observed edges of being
edges, with the sole exception of a connection between
Mohamed Atta (one of the main leaders) and Waleed al-
Shehri, which is not considered in Refs. [25,26] but to
which our method ascribes a reasonably high probability of
0.48. Atta is connected to all members of al-Shehri’s group,
and, according to the HDCSBM, the sole missing link
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FIG. 2. Network of social associations between 9/11 terrorists [25,26]. This network is measured by potentially unreliable means, but
no quantitative error estimates are known, and no repeated measurements were made. In (a) and (b) is shown the inferred network
according to our method—which does not require direct error estimates or repeated measurements—where the edge thickness indicates
the posterior marginal probability of an edge existing. In (a), the inferred hierarchical structure is shown, with pie charts on the nodes
indicating the marginal probabilities of group memberships, and, in (b), a spatial layout of the same network shows the lowest level of
the hierarchy as the node colors. The edge shown in red is inferred as existing with a large probability, despite not being measured. Other
potentially missing edges are also shown in red, with a probability given by their thickness and opacity. In (c) is shown the marginal
probability of edge existence for all node pairs, indicating a fair amount of inferred reliability—with the exception of the single missing
edge highlighted in (a) and (b)—despite the lack of direct error estimates in the data. The horizontal line marks a 1/3 probability as a
visual aid. The missing edge corresponds to a connection between Mohamed Atta and Waleed Alshehri, which is not considered in

Refs. [25,26] but is corroborated by reports that they shared an apartment in Berlin and met previously in Spain.

between them is therefore suspicious. Indeed, journalistic
reports place both individuals occasionally sharing an
apartment in Berlin [27] and meeting at least once in
Spain [28], prior to the attacks, which seems to corroborate
our reconstruction. The remaining observed nonedges have
a probability of 0.15 or smaller, which should not be
outright discarded, and could serve as candidates for further
investigation.

We now move to another social network, namely, the
interactions between 34 members of a karate club, origi-
nally studied by Zachary [29]. This network is widely used
to evaluate community detection methods, after its use for
this purpose in Ref. [30]. It is recorded just before the split
of the club into two disjoint groups after a conflict, and
many community detection methods are capable of accu-
rately predicting the split by detecting communities from
this snapshot. However, not only does the original pub-
lication of Ref. [29] omit any assessment of measurement
uncertainties, but also it clearly contains one obvious error:
The adjacency matrix A published in the original study,
although it is supposed to be symmetric, contains two
inconsistent entries with A;; # A, for (i, ) = (23,34),
creating an ambiguity about the existence of this particular
edge [31]. The authors of Ref. [30] make the decision of
assuming A,334 = 1, even though there seems to be no
obvious reason to decide either way a priori. The vast
majority of other works in the area follow suit (possibly
inadvertently), thus incorporating this potential, though
arguably small, error in their analysis. Here, we tackle this
reconstruction problem by mapping the uncertain data set
of Ref. [29] to our framework. Since each node pair (i, j) is

also presented reversed (j, i), we consider these as inde-
pendent measurements such that n;; =2 for every pair
(i, j). Since the measurements are consistent for all but one
pair, we have x;; = 2 or 0, except for the offending entry
with x(2334) = 1. Based on this setup, we employ our
reconstruction approach to obtain P(A|r,x), using as
generative processes the Erd6s-Rényi (ER) model (equiv-
alent to a SBM with only one group, B = 1), the configu-
ration model (CM) (equivalent to a DCSBM with B = 1),
and the HDCSBM. As we see in Fig. 3, the ER model is
incapable of disambiguating the data, as it cannot be used to
detect any structure in it, and ascribes a posterior proba-
bility of 0.5 to the uncertain edge. Both the CM and the
HDCSBM, however, ascribe high probabilities for the
edge, of 0.87 and 0.93, respectively. The CM approach
is able to recognize that, since node 34 is a hub in the
network, an edge connecting to it is more likely to occur
than not, and the HDCSBM can further use the fact that
both nodes belong to the same group. Therefore, it seems
like the choice made by the authors of Ref. [30] of
assuming A,3 34 = 1 is fortuitous, and the de facto instance
of this network used by the majority of researchers is the
one mostly likely to correspond to the original study.

In the following, we move to a systematic analysis of the
reconstruction method, based on empirical and simulated
data.

C. Reconstruction performance

Before we evaluate the performance of the reconstruction
approach, we must first decide how to quantify it. As a
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FIG. 3. Inferred Zachary’s karate club network using the
uncertain data from the original publication [29], which contain
an ambiguous edge (23,34), as explained in the text. (a) Layout of
the reconstructed network showing the posterior edge probabil-
ities as edge thickness, according to the HDCSBM, and the
ambiguous edge in red. The node colors correspond to a sample
from the posterior distribution of the node partitions. (b) Posterior
probability density of the probability of edge (23,34), conditioned
on the remaining edges and model parameters, for the different
model variants indicated in the legend and explained in the text.
The vertical dashed lines indicate the distribution averages,
corresponding to the marginal posterior probability of the edge.

criterion of how close an inferred network A is to the true
network A* underlying the data, we use the distance of
Eq. (25):

d(A.A7) = |A; —Ajl.

i<j

A successful reconstruction method should seek to find an
estimate A that minimizes this distance. Howeyver, since we
do not have direct access to the true network A*, the best we
can do is to consider the average distance over the posterior
distribution given the noisy data:

d(A) =Y "d(A.A)P(Alx.n) (41)
A

= Z|Aij - ”ij|v (42)

i<j

where
A

is the marginal posterior probability of edge (i, j). If we
minimize d(A) with respect to A, we obtain

R 1 if z; > 1/2,
Ay = {0 . (44)
if m;; <1/2,

for m;; # 1/2. Equation (44) defines what is called a
maximum marginal posterior (MMP) estimator, and it
leverages the consensus of the entire posterior distribution
of all possible networks for the estimation of every edge.
Operationally, it can be obtained very easily by sampling
networks from the posterior distribution and computing
how often each edge is observed, yielding an estimate for z
and, hence, A.

Given the above criterion, we evaluate the reconstruction
performance by simulating the noisy measurement process.
We do this evaluation by taking a real network A*
(which for this purpose we are free to declare to be
error-free), obtaining a measurement x given error rates
p and ¢, and measuring each edge and nonedge the same
number of times n;; = n. We choose p arbitrarily, and
q = pE/[() — EJ, where E is the number of edges in A",
so that the measured networks have the same average
density as A*. Given a final measurement x, we sample
inferred networks A from the posterior distribution
P(A|x.n) and compute the MMP estimate A from the
marginal distribution zz. The quality of the reconstruction is
then assessed according to the similarity to the true network

A*, S(A,A*) €[0,1], defined as

d(A,A¥)

SAA)=1-——"——
> iciAij T A

: (45)

where d(A,A*) is the distance defined in Eq. (25). A value
of S(A,A*) =1 indicates perfect reconstruction and

S(A,A*) = 0 the situation where A and A* do not share
a single edge [34].

In Figs. 4(a) and 4(e) are shown the results of this
procedure with the political blogs and openflights networks
(see Appendix E). As a baseline, in both figures we show the
direct similarity S(x, A*) of the data obtained with n = 1 to
the true network A*, as dashed curves. In both cases, the
similarity of the inferred network S(A,A*) to the true
network is larger than the one obtained with the direct
observation S(x,A*) for the vast majority of the parameter
range, indicating systematic positive reconstruction even
with single measurements. Expectedly, the quality of
reconstruction increases progressively with a larger number
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FIG. 4. Reconstruction performance for political blogs (top row) and openflights (bottom row) networks. In each case, the empirical
network is considered as the true network, and simulated measurements are made for several values of missing edge probability p, with a
spurious edge probability ¢ = pE/[(5) — E|. (a),(e) Similarity of the MMP estimator to the true network, S (A,A*), as a function of p,
and for several values of the number of repeated measurements, n. (b),(c),(f),(g) Posterior average local clustering and degree
assortativity coefficients, according to the same legend as (a) and (e). (d),(g) KL divergence between true and inferred degree
distributions, as discussed in the text. In all cases [(a)—(h)], the dashed curve shows the corresponding value obtained directly with the
measured data with n = 1, and the solid horizontal line marks the true value corresponding to perfect reconstruction.

of measurements n, with the similarity eventually approach-
ing one. Although perfect reconstruction is not possible with
single measurements when the noise is large, it is a note-
worthy and nontrivial fact that the distance to the true
network always decreases when performing it. This perfor-
mance is possible only due to the use of a structured model
such as the HDCSBM that can recognize the structure in the
data and extrapolate from it. If one would use a fully random
model in its place, the similarity would be zero in the entire
range, if n = 1 (although it would improve for n > 1).

A particularly interesting outcome of the successful
reconstruction is that the noise magnitudes p and ¢ can
be determined as well, even though they are not a priori
known. As shown in Fig. 5, the posterior probabilities for p
and g are very close to the true values used, even for single
measurements. (The precision of the inferred values of ¢ is
generally higher than of p, as we are dealing with sparse
networks, with vastly more nonedges than edges.) For the
openflights data, the accurate noise recovery occurs only
for moderate magnitudes, and a strong discrepancy is
observed for values around p 2 0.5. In such situations,
prior knowledge of the noise values could have aided the
reconstruction for n = 1, but, otherwise, any benefit from
this information would have been marginal. Again, the
noise recovery becomes asymptotically exact as we
increase the number of measurements and is already very
accurate for n = 2.

We note that the results in Fig. 4 remain largely
unchanged if the underlying network considered is sampled
from the DCSBM with parameters inferred from the
original data (not shown).

1. Estimating summary quantities

In addition to or instead of the network itself, we may
want to estimate a given scalar observable y(A) that acts as
a summary of some aspect of the network’s structure. In
this case, we should seek to minimize the squared error
with respect to the true network A*:

o *\12
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FIG.5. Inferred values of noise magnitude p and ¢ as a function

of the planted values, for the same simulated measurements
described in Fig. 4, for political blogs [(a),(b)] and openflights
[(¢),(d)] networks.
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where § is our estimated value. Like before, without
knowing A*, the best we can do is minimize the squared
error averaged over the posterior distribution:

o} = > [§ = y(A)PP(Aln,x). (47)

A

. e .« . 2 . "~ . .
Minimizing o5 with respect to j yields the posterior mean
estimator

y—Zy

We can also obtain the uncertainty of this estimator by
computing its variance of Eq. (47) so that the uncertainty of
$ is summarized by its standard deviation oj.

P(Aln,x) (48)

It is important to emphasize that, in general, § # y(A),
with A being the MMP estimator of Eq. (44). In other
words, the best estimate for y(A*) (i.e., with minimal
squared error) is not the same as the value obtained for the
best estimate of A* (i.e., with minimal distance).

In Figs. 4(b), 4(c), 4(f), and 4(g), we see the results of the
same experiment described above, where we attempt to
recover the average local clustering coefficient and the
degree assortativity of the original network. As with the
similarity, the inferred values are closer to the true net-
work’s. However, in this case, the values for n = 1 are
substantially closer to the true value for a large range of
noise magnitudes and are often indistinguishable from it,
which means that, even in situations where the posterior
distribution of inferred networks yields a relatively poor
similarity to the true network, as it cannot precisely correct
the altered edges and nonedges, it still shares a high degree
of statistical similarity with it and can accurately reproduce
these summary quantities.

2. Estimating degree distributions

We can also estimate degree distributions p;, defined as
the probability that a node has degree k, by treating them
like a collection of scalar measurements and minimizing
the squared error [P — pi(A)]* averaged over the
posterior distribution, which yields the same posterior
mean estimator used so far:

Pe=>_p(A)PAfx

The same estimator is also obtained when minimizing the
Kullback-Leibler (KL) divergence,

n). (49)

KLG@IP) = Y pilayi ), (50)

over the posterior, which offers a more convenient way to
compare distributions, as it can be interpreted as the amount

of information “lost” when p; is used to approximate
pr(A).

For the estimation of the degree probabilities p;(A)
for each individual network sampled from the posterior,
we model the degrees k= {k;} as a multinomial
distribution [35]

[Tine!

where n; is the number of nodes of degree k. The
probabilities themselves are modeled by a uniform
Dirichlet mixture, i.e., sampled uniformly from a simplex
constrained by the normalization Y X/ p, = 1:

P({pe}) = K!é(z pr— 1>, (52)
k

where K is the largest possible degree. With this, the
posterior mean becomes

Pkl{pi}) =

nk+1

—_—. 53
N+K+1 (53)

Pr(A) =
This estimation is superior to the more naive p; = n;/N,
as it is less susceptible to statistical fluctuations due to a
lack of data, such as when n;, = 0, although it approaches it
for N> K and n;, > 1.

In Figs. 4(d) and 4(h) are shown the KL divergence
between the inferred and true distributions, for the same
experiments as before. Like with the local clustering and
assortativity coefficients, the reconstructed degree distri-
butions remain very close to the true one, despite the
continuously decreasing similarity for larger noise magni-
tudes. In Fig. 6 can be seen the true, measured, and
reconstructed distributions for the political blog network,
for a value of (p,q) = (0.41,0.0094). Despite the rela-
tively high noise magnitudes, a single measurement of
the network does fairly well in reconstructing the original
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FIG. 6. True, measured (with n = 1), and reconstructed degree
distributions of the political blog network, with noise magnitudes
(p.q) = (0.41,0.0094).
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distribution, failing mostly only for degrees zero and one,
despite the significant distortion caused by the noisy
measurement process.

3. Edge prediction: Network denoising and completion

The reconstruction task we have been considering shares
many similarities with the task of model-based edge
prediction [5,6] but is also different from it in some
fundamental aspects. Most typically, edge prediction is
formulated as a binary classification task [7], in which each
missing (or spurious) edge is attributed a “score” (which
may or may not be a probability), so that those that reach a
prespecified discrimination threshold are classified as true
edges (or true nonedges). This threshold is an input of the
procedure, and usually the quality of the classification is
assessed by integrating the true positive rate versus the false
positive rate [also known as the receiver operating char-
acteristic (ROC) curve] for all discrimination threshold
values. This integration yields the area under the curve
(AUC), which lies in the unit interval, and can be
equivalently interpreted as the probability that a randomly
selected true positive will be ranked above a randomly
chosen true negative. Thus, a value of 1/2 indicates a
performance equivalent to a random guess, and a value of 1
indicates “perfect” classification (note that a classifier with
an AUC value of 1 still requires the correct discrimination
threshold as an input to fully recover the network).

In contrast, the reconstruction task considered here
yields a full posterior distribution P(A |n, x) for the inferred
network A. Although this distribution can be used to
perform the same binary classification task, by using the
posterior marginal probabilities z;; as the aforementioned
“scores,” it contains substantially more information. For
example, the number of missing and spurious edges (and,
hence, the inferred probabilities p and g) are contained in
this distribution and thus do not need to be prespecified.
Indeed, our method lacks any kind of ad hoc input, such as
a discrimination threshold [note that the threshold 1/2 in
the MMP estimator of Eq. (44) is a derived optimum, not an
input]. This property means that absolute assessments such
as the similarity of Eq. (45) can be computed instead of
relative ones such as the AUC.

Furthermore, the reconstruction approach can be used to
recover summary quantities and perform error estimates,
which is usually not directly possible in the binary classifier
framing. In addition, reconstructed networks can contain
spurious and missing edges simultaneously, whereas with
traditional edge-prediction methods, they each require their
own binary classification (with their own discrimination
thresholds).

When doing edge prediction, one often distinguishes
recovering from the effects of noise (i.e., an edge has been
transformed into a nonedge, or vice versa)—to which we
refer as denoising—and from a lack of observation (i.e., a
given entry in the adjacency matrix is unknown)—to which

we refer as completion. In each scenario, the scores are
computed differently, yielding different classifiers. When
performing reconstruction with our method, we inherently
allow for any arbitrary combination of denoising and
completion: If an entry is not observed, it has a value of
n;; = 0, which is different from it being observed with
n;; > 0as anonedge x;; = 0. If the noise parameters p and
q are zero, recovery via the posterior distribution amounts
to a pure completion task for the entries with n;; = 0, and
likewise we have a pure denoising task if n;; > 0 for every
pair (i, j); otherwise, we have a mixture of these two tasks.

In Fig. 7, we illustrate some of these tasks, performed
using our framework for the openflights data set, which we
find to be representative of the majority investigated. In
Figs. 7(a) and 7(b) are shown the results for edge (¢ = 0)
and nonedge (p = 0) denoising, respectively. Given that
this network is sparse, the probability of an edge is on
average much smaller than that of a nonedge, which
means that the edge denoising task is significantly harder
than nonedge denoising, for which very high accuracy
can be obtained even for n = 1 measurement per edge.
Nevertheless, positive reconstruction is possible in each
case, approaching a similarity of 1 as the number of
measurements is increased.
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FIG. 7. (a) Edge denoising reconstruction performance for the

openflights data, as a function of the missing edge probability p,
for various n, and ¢ = 0. The dashed curve shows the corre-
sponding value obtained directly with the measured data with
n =1, and the inset shows the difference between the curve for
n = 1 and the dashed curve. (b) The same as (a) but for nonedge
denoising, with p = 0. The values of ¢ are chosen to yield the
same number of affected nonedges as edges in (a). (c) Edge
completion reconstruction performance as a function of the
fraction f of unobserved edges. The dashed line shows the value
of similarity obtained by considering the unobserved edges as
nonedges. (d) The same as (c) but for nonedge completion, as a
function of the fraction f of unobserved nonedges. The dashed
line shows the value of similarity obtained by considering the
unobserved nonedges as edges.
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We also perform network completion by choosing a
fraction f of edges or nonedges, for which zero measure-
ments are performed, n;; = 0, while the remaining entries
are observed n times, n;; = n. In Figs. 7(c) and 7(d) are
shown the reconstruction results for edge and nonedge
completion, respectively. Like for denoising, nonedge
completion is easier, approaching near perfection for the
entire range of parameters, and for the same reason as
before. For the completion tasks, however, the number of
observations n for the nonaffected entries has a negligible
effect in the reconstruction, and we observe near-optimal
performance already for n = 1.

Although the number of edges and nonedges affected is
the same for both our denoising and completion examples,
the latter yields a larger rate of successful reconstruction for
both edges and nonedges. This result is understood by
noting that these tasks have a different number of
unknowns. In the case of edge completion, on the one
hand, for a given finite fraction f of nonobserved edges, we
have O(E) unknowns, which for sparse networks is O(N).
For edge denoising, on the other hand, for any fraction p of
missing edges, for sparse networks we have, in principle,
O(N?) possibilities for their placements, corresponding to
all observed nonedges. For nonedge denoising and com-
pletion, the difficulty is comparable: For any fraction
f = O(1/N) left unobserved or ¢ = O(1/N) transformed
into spurious edges, there are O(N) unknowns, if the
network is sparse. However, the actual number of
unknowns for nonedge completion is strictly smaller, as
it must involve only the fraction not observed, whereas for
denoising it involves every observed edge.

This difference in performance shows how the correct
interpretation of the data can be crucial—as absence of
evidence is not evidence of absence. Unfortunately, most
available data sets fail to make this distinction, including
those few which actually provide some amount of error
assessments, as they do not indicate which pairs of nodes
have not been measured at all.

4. Detectability of modular structures

Our approach generalizes the task of community detec-
tion for networks with measurement errors. However, even
in the case of error-free networks with planted community
structure, this task is not always realizable. This situation is
most often illustrated with a simple SBM parametrization
known as the planted partition (PP) model:

Wy = (Uin(srs + wout(l - 5rs)7 (54)

with equal-sized groups, n, = N/B. As shown in Ref. [38],
the detection of communities from networks sampled from
this model undergoes as a phase transition and becomes
impossible for parameter values satisfying

N‘win - wout| < B\/@;v (55)

where (k) = N|wj, + (B — 1)@, ]/B is the average degree
of the network. This transition means that, even though a
PP model may contain assortative community structure
with @y, > @y, the individual samples from the generative
model are indistinguishable from a fully random graph
if the inequality of Eq. (55) is fulfilled and, hence, contain
no information useful for the recovery of the planted
communities.

When considering measured networks, it is expected that
the introduced errors make the detection task more difficult,
as the noise removes information from the data. As we see
in Sec. I A1, when a single measurement of a SBM
network is made with noise parameters p and ¢, it becomes
indistinguishable from a SBM sample with effective
probabilities @’, given by Eq. (36). Applying this fact to
the PP model yields a transition according to

B(T=p=q)F) +aN

(I-p-9q) (56)

Nlwin = @ou| <

For positive error magnitudes p > 0 or ¢ > 0, the above
threshold is larger than Eq. (55). This result highlights how
measurement noise can hinder the detection of large-scale
structures if they are sufficiently weak and induce a phase
transition in their detection. It also means that the recon-
structions of the networks themselves are affected by the
same transition, as our approach hinges on the detectability
of these large-scale structures.

In Fig. 8 are shown the reconstruction results for PP
network samples with B = 2 groups, for simulated mea-
surements always using g = 0, but with either p =0 or
p = 1/2. Without measurement noise, p = 0, the detect-
ability of the planted partition is possible all the way down
to the detectability threshold of Eq. (55). Despite the lack of
noise, the similarity with the true network is only slightly
above 0.6 in the detectable region, which is because the
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5 04~ & p=0n-=1
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FIG. 8. (a) Normalized mutual information (NMI) between
planted and inferred partitions for a PP model with N = 10%,
B =2, (k) = 10, and measurement errors ¢ = 0 and p given in
the legend, together with the number of measurements n. The
black solid line marks the threshold of Eq. (55), and the blue
dashed line the threshold of Eq. (56) with (p,q) = (1/2,0).
(b) The same as in (a), but for the similarity S (A,A*) between the
inferred and true networks.
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1075 107* 1073 1072 10~' 10°

FIG. 9.

(a) Measured neural network of the C. elegans worm [39]. (b) Marginal posterior distribution ;; of the edges according to our

reconstruction method, shown as edge colors. (¢) MMP estimate of the network, with inferred missing edges shown in red and spurious

edges shown in green.

probabilities in this ensemble are not sufficiently hetero-
geneous to rule out high noise values, as some of the
empirical networks we consider. Below the transition, the
similarity falls to zero, as the network becomes indistin-
guishable from a fully random one. Interestingly, this
partial uncertainty about the network does not affect the
inference of the node partition. If we increase the noise to
p = 1/2, the partition recovery is possible up to the
threshold of Eq. (56) when only n =1 measurements
are made. However, after sufficiently increasing n, the
effects of noise are diminished, and the original threshold
can be achieved. In this case, the similarity also becomes
high even below the detectability threshold, where the
community structure itself cannot be recovered, which is
because the repeated measurements themselves yield suf-
ficient information about the network structure, and the
reconstruction no longer needs to rely on the network
structure itself.

D. Reconstruction of empirical data
and uncertainty assessment

A central advantage of our method is that it can be used
to reconstruct noisy networks when only a single meas-
urement has been made for each entry in the adjacency
matrix and no error assessment is known. As the majority
of network data can be cast into this framework, our
method can be used to reconstruct them and give uncer-
tainty assessments for quantities of interest. In this section,
we discuss a few empirical examples.

We focus first on the neural network of the
Caenorhabditis elegans worm. It is used extensively as
a model organism, and it had its full neural network
mapped in 1986 by White er al [39]. The network
measurement is done by electron microscopy of transverse
serial sections of the animal’s body of about 50 nm

thickness, amounting to around 8000 images. Based on
these images, the network is reconstructed by painstaking
manual tracing of the neuron paths across the different
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FIG. 10. Reconstruction statistics for the neural network of C.
elegans. (a) Posterior distribution of the degree assortativity
coefficient. The black dashed line marks the mean of the distribu-
tion, and the blue dashed line the value obtained for the MMP
estimate A. The red solid line marks the value computed directly
from the data. (b) The same as (a) but for the average local clustering
coefficient. (c) Measured and estimated degree distributions.
(d) Posterior distributions for the error probabilities p and g.
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images. The reliability of the reconstruction procedure is
discussed in Ref. [39], where human error in tracing the
neuron bundles, the orientation of the neurons with respect
to the transverse section, and poor image quality are
identified as the main sources of potential errors. White
et al. employ a series of error-mitigating procedures, such
as detecting basic connection inconsistencies, exploiting
the partial bilateral symmetry for suspect connections, and
comparing with independent reconstructions of parts of the
network. Although the authors of that work profess to be
“reasonably confident” that the structure they present is
“substantially correct,” they do not exclude the possibility
of remaining errors, nor do they quantify in any way the
uncertainty of their measurements. Furthermore, the data
commonly used for network analysis, which we also use
here, are manually compiled by Watts and Strogatz [40],
based on the original data of Ref. [39], and may contain
further errors. The resulting data we use amount to N =
302 nodes and E = 2345 directed edges (note that five
nodes are excluded in Ref. [40] for not having any
connections; we include these nodes in our analysis, as
it is suspicious that isolated neurons can exist and thus is
probably a symptom of missing data).

When we employ our reconstruction procedure on the C.
elegans data, we find the results shown in Figs. 9 and 10
and summarized in Table I. The MMP estimate of this
network contains £ = 2773 edges, but the posterior dis-
tribution is significantly broad and contains on average
(E) = 3950 edges, meaning that there are many potential
edges with low but non-negligible probabilities. We note
that our reconstruction connects the isolated nodes in the
data to the main hub in the network, which is an important
neuron situated in the head of the worm. As seen in
Fig. 10(a), the inferred degree assortativity coefficient is
compatible with the value measured directly from data, and
our method is capable of providing a confidence interval for
this estimation. The same is not true for the average local
clustering coefficient, as seen in Fig. 10(b), which is not
compatible with the value measured directly from the data
with any reasonable confidence.

For the C. elegans data, the inferred error rates are
(p.q) = (0.4,6 x 107). Although this result corresponds
to a very high accuracy with respect to spurious edges, it
indicates a low accuracy with respect to missing edges, and
it implies that almost half of the original edges are
misrepresented as nonedges. Although the consensus of
the posterior distribution (represented by the MMP esti-
mate) is reasonably close to the original data, with a
similarity of 0.93, the similarity averaged over the posterior
distribution is only 0.74, indicating a fair amount of
uncertainty. This result seems to contradict the qualitative
assessment of Ref. [39], which argues in favor of the
reliability of their data. This discrepancy can be interpreted
in two ways: (i) The assessment in Ref. [39] is too
optimistic, and the data contain indeed more errors than

anticipated. (ii) The data actually contain fewer errors than
our method predicts, but the true network itself is not
sufficiently structured to rule out errors in a manner that can
be exploited by our method. However, even if case
(i1) happens to be true, our method correctly projects an
agnostic prior assumption about the error rates onto the
posterior distribution, after being informed by the data. It
then follows that more confidence in the data and in the
existence of fewer errors must be accompanied by either
more data (e.g., repeated measurements) or a more refined
prior information on the error rates, obtained either by
calibration or a quantitative study of the methods employed
in Ref. [39]. As an illustration, in Fig. 11 is shown the
posterior similarity with the data obtained with different
choices of the hyperparameter 3, using « = 1, which control
the prior knowledge on the value of p, with an average given
by (p) = a/(a+ f). A high accuracy of the data, with
inferred similarities approaching one, is achieved only by a
prior belief on p being on the order of 0.01 or smaller. This
result means that one should trust the claimed high accuracy
in Ref. [39] only if one is confident that the probability of an
edge not being recognized as such was below one percent,
which might very well be true but would need to be
substantiated with further evidence. Although in situations
such as these our method cannot fully resolve the discrep-
ancy without further data, it serves as the appropriate
framework in which to place the issue and shows that any
analysis that takes the original measured data for granted,
ignoring potential errors, inherently assumes more reliabil-
ity than can be inferred from the data alone.

For other kinds of data, it is possible to obtain very
accurate reconstructions with single measurements. As an
example, we consider the network of collaborations in
papers published in the cond-mat section of the arXiv.org
preprint Web site in the period spanning from January 1,
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FIG. 11. Average similarity between the posterior samples and
the measured C. elegans data as a function of the hyperparameter
p (with @« = 1), which controls the prior belief on the probability
p of missing edges (the average of which is shown in the x axis).
For reference, the similarity for the MMP estimate is also shown.
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FIG. 12. Reconstruction statistics for the coauthorship network of
arXiv.org. (a) Posterior distribution of the degree assortativity
coefficient. The black dashed line marks the mean of the distribu-
tion, and the blue dashed line the value obtained for the MMP
estimate A. The red solid line marks the value computed directly
from the data. (b) The same as (a) but for the average local clustering
coefficient. (c) Measured and estimated degree distributions.
(d) Posterior distributions for the error probabilities p and g.

1995, to March 31, 2005, where authors are nodes and an
edge exists if two authors published a paper together [41].
This network is compiled by crawling through the Web-site

|

n;; X " —A..
P(Xij|nij,Aij, pij’ qu) = (xlj ) [(1 — pij)xijp;ljf! X”]Aij [qu’j<l — ql-j>n’./'_xi./:|1 Al!.

tj

interface and could contain errors due to incorrect parsing
[42]. When reconstructed using our method, however, we
find that it is remarkably accurate, with very low error rates
inferred as (p,q) = (3 x 107,3 x 10™). As can be seen
in Fig. 12, all inferred properties match very closely the
direct measurement—although our reconstruction is still
useful in providing error estimates for them.

In Table I, we provide a summary of reconstruction
results with our method to several empirical networks. We
observe a tendency of larger networks to be more accurate
than smaller ones. This is not a trivial result of there being
more data but rather of these larger networks containing
stronger structures which are informative of low measure-
ment noise. If these networks were fully random, their
reconstruction accuracy would have been very poor,
regardless of their size.

E. Heterogeneous errors

So far, we consider only the situation where the error
probabilities p and ¢ are the same for every pair of nodes in
the network. Although it is easy to imagine a simplified
scenario where the same measurement instrument is used in
every case, it is also easy to imagine situations where this is
not an adequate representation of how a measurement is
made. For example, in the case of the C. elegans neural
network, the spatial proximity of the neurons may make it
harder or easier to measure the edges and nonedges, thus
impacting their error probabilities.

With this in mind, it is easy to generalize our
framework to allow for individual error probabilities p;;
and g;;, for missing and spurious edges between nodes i
and j, respectively. Given a true underlying entry A;;
between these two nodes, its measurement probability is
given by

(57)

Using the same Beta priors as before, we can integrate over p;; and g;;, obtaining

P(xij|nij»Aij»a»ﬁn“vV):/P(xij|niijij’pij’Qij)P(pij|a’ﬁ)P(qij|:“vy)dpideij

(58)

xij

With this result, we have the full conditional distribution for
the measured network,

P(x|n7A7a’ﬁ9/’t’y) = HP(xij|niijij’a’ﬁv/’l7y)’

i<j

(59)

with which we can obtain the posterior distribution of
Eq. (3). However, unlike the case with uniform errors, the

<”ij> |:B(nij_xij+a’xij+ﬁ):|Aij |:B(xij+ﬂ’nij_xij+’/) =4
B(a.p) '

B(u.v)

[

choice of hyperparameters is now vital. The noninformative
assumption a = f = u = v = 1 applied above makes the
likelihood independent of the planted network A, rendering
the data completely uninformative as well, which means we
must have some global information that specifies how the
values of p;; and g;; are distributed. Although we could
simply set (or fit) the values of the hyperparameters to values
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different from one, we favor a nonparametric approach, and
we include the hyperparameters in the posterior distribution,

P(A,b,a,p,u,v|n,x)
_ P(x|n,A,a.p,p,v)P(AD)P(b)P(a, B, u,v)
B P(x|n)

which requires their own hyperprior distribution
P(a, f, u,v). Here, we are agnostic and use a constant prior
P(a,p,p,v) x 1, with an unspecified and unnecessary
normalization constant, as it cancels out in the posterior
distribution. [43] The inference algorithm is the same as
before, but, in addition to move proposals for the network A
and node partition b, we make also move proposals for the
hyperparameters.

Like in the uniform case, we can obtain the posterior
distribution for the error probabilities via their conditional
posteriors, i.e.,

. (60)

P(pijlnij xij, Aij. . )
pAij(nij—xij)+a—1 (1 - p)xiinj+ﬁ_1

= (61)
B(Aij(ni; — x;j) + a.x;;A;; + B)
and likewise for g;; with
P(‘]ij|nij»xiijija/‘,V)
q(l—Aij)x1j+ﬂ—1 (1 — q)(l—Aij)(”ij—xij)+”—1 (62)

- B((1 —Aj)xi; 4 p (1= Ay)(ny; = x;) +v)’

averaged over the posterior distribution.

We note that, for heterogeneous error rates, the case with
single measurements n;; = 1 becomes less interesting. If
we replace n;; = 1 and x;; € {0, 1} in the above equations,
they become identical to Eq. (15) for the case with uniform
errors, if we make the substitution

_Bla+1,p)  «a
- Blap)  a+p’ (©3)
_Butly)
- Blwy)  ptv (64)

In this situation, only the prior averages of p;; and g;;
matter, not their variance. A uniform prior for a, f, y, and v
is equivalent to Beta priors with parameters (1,0) for p and
g computed via the equation above, [44] and hence this
approach becomes completely identical to the one with
uniform errors considered before. Therefore, there are no
sufficient data in the single measurement case to detect
heterogeneous errors of this kind, and thus a meaningful
use of this method is confined to data with n;; > 1. Note
also that this equivalence implies that any error hetero-
geneity present in the data will be conflated with under-
lying network structure when single measurements are
made. Ultimately, this conflation can only be resolved by
making multiple measurements.

We consider two data sets which contain multiple mea-
surements, in order to compare both approaches. We consider
the reality mining data set, which records proximity inter-
actions between voluntary students over time [45]. Following
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for the reality mining (top row) and human connectome (bottom row) data sets. (a),(d)

Empirical data. (b),(e) Generated from inferred parameters, according to the uniform model. (c),(f) Generated from inferred parameters,

according to the nonuniform model.
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Reconstruction results for empirical networks with multiple measurements per edge. For each quantity is shown the value obtained using either the uniform or the

nonuniform model, as indicated. The value of B, =e*/(") is the effective number of inferred communities, computed as H(rn) =—->_,(n,/N)In(n,/N), where n, is the number of
nodes in group r. The values p and § are the posterior averages of the error rates. In all cases, the parentheses indicate the standard deviation over the posterior distribution. Data set

descriptions are given in Appendix E.

TABLE IL

Local clustering

Degree assortativity

Edges

Nonuniform
0.0004(13)

Uniform

Nonuniform
0.0011(3)

Uniform

Nonuniform  Uniform  Nonuniform  Uniform  Nonuniform Uniform Nonuniform
0.012(2)

Uniform

Nodes

n

Data set

0.49(3)

2.9(6)

0.63(5) 2.9(6)

0.569(8)

—0.43(5)

95(6) —0.475(3)

77.93)

34

Karate

club
Reality

0.713)  0.0007(2) 0.001(2)

3.4(6) 0.724(8)

0.29(2) 3.5(6)

0.312)

280(20) —0.23(3)  —0.23(3)

293(11)

96

mining
School

1.8(7) x 107

0.16(3)

80.2(3)

82.5(3)

2539

6

0.0002(9)

0.5064(11)

0.258(4) 0.322(6) 0.1535(13)  0.188(3)

8200(300)

12 500(40)

friends

Human

0.000984 6(10) 1(11)x10~*

62 000(6000)  0.0008(5) 0.002(3)  0.6796(4) 0.68(7) 100.5(11)  51.26(19)  0.84503(8) 0.93(9)

23020(16)

1015

418

connectome

Ref. [10], as measurements we consider the state of the
network during eight consecutive Wednesdays in March and
April of 2005, so chosen to avoid weekly periodic events. In
addition, we consider the human connectome, using data
from the Budapest Reference Connectome [46] (which itself
is based on primary data from the Human Connectome
Project [47]). This data set contain records of the neuronal
connections of 418 individuals, each of which we consider as
a separate measurement.

For both data sets considered—as it is arguably always
true whenever multiple network measurements are made—
it is debatable whether there is really a true single network
behind the measurements, as our method assumes. For
example, in the reality mining data set, the underlying
network could be changing over time, and the connectome
can vary between individuals for physiological reasons
rather than measurement error. In each case, however, we
are free to keep the mathematical structure of our model in
place and change its interpretation. We could, for instance,
assume that the single network being inferred amounts
simply to a consensus or a blueprint of the network, and the
“error” rates p;; and ¢;; indicate the variability of each
single edge or nonedge around this blueprint. Since both
scenarios are generally conflated when making this kind of
measurement, we can choose the interpretation that is most
suitable according to the context.

In Figs. 13(a) and 13(d) are shown the distributions of the
measured frequencies of edge occurrences, x;;, for both data
sets. For the human connectome, we observe a very broad
distribution, with occurrences present in the entire possible
range. In Figs. 13(b) and 13(e), we see the simulated results
by sampling parameters from the posterior distribution and
generating new data from them, using in this case the model
with uniform errors. Whereas the results for reality mining
are reasonably close to the data, the results for the human
connectome show an obvious discrepancy, where the gen-
erated data are concentrated around two modes, correspond-
ing to the frequencies of edges and nonedges. Indeed, for the
uniform model, this separation is guaranteed to occur for any
given p # 1/2 and g # 1/2 and a sufficiently large number
of measurements. The fact that this separation is not observed
in the data is a clear indication that the error rates are not
uniform (or alternatively, but mathematically equivalently,
that there is no single network behind the measurements).
Indeed, when using the nonuniform model, it recovers the
observed frequency almost perfectly, as seen in Figs. 13(c)
and 13(f).

If we look more closely at the human connectome data, we
see that both approaches give us different pictures of
the underlying network structure. As is summarized in
Table II, the uniform model yields a sparser network, which
nevertheless seems more finely structured, with close to 100
effective groups detected. Conversely, the nonuniform model
yields a denser network, with a more uniform structure and
only half as many identified groups. In Fig. 14, we see more
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FIG. 14. Reconstruction results for the human connectome. (a) Marginal posterior distribution of edges z

0.00

;j and inferred hierarchical

partition, according to the model with uniform errors. The upper hierarchy branch corresponds to the right hemisphere. (b) The same as
(a) but with the nonuniform model. (¢) Inferred missing edge probabilities p;; for the nonuniform model. (d) The same as (c) but for the

spurious edge probabilities g;;.

clearly the differences between both results. Both are capable
of uncovering the hemispherical divisions and the partial
bilateral symmetry of the connectome. The nonuniform
model can detect a larger number of edges, but it yields
larger probabilities of missing edges p;; which are hetero-
geneously distributed. In Fig. 14(c), it can be seen that the

2000

0

0.8448  0.8452
Missing edge probability p

100000

Posterior probability density
Posterior probability density

0.4 0.6
(a) Pij Or gij (b)  Spurious edge probability ¢

0 0.00098 0.00099

I Nonuniform errors

Uniform errors
I Naive

0.0 0.2 0.4 0.6 0.8 1.0
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FIG. 15. Inferred uncertainties for the human connectome.
(a) Posterior distribution of p;; and g;;, using the nonuniform
model. (b) Posterior distribution of p and ¢, using the uniform
model. (c) Distribution of posterior marginal edge probabilities
m;j, according to both model variants, as well as the naive
estimate ﬁ.U = xij/nij.

inferred p;; are strongly correlated with the detected group
structure and, in particular, seem to indicate a rather stable set
of edges (low p;;) that belong mostly to the left hemisphere.
The uniform model, on the other hand, incorporates the
variability of edge occurrences in the model itself, subdivid-
ing the groups further to accommodate it. Therefore, the
nonuniform model gives a more faithful separation between
the consensus and the variability around it.

In Fig. 15, we can see the posterior distributions of p;;
and g;; for the nonuniform model, as well p and g for the
uniform model, showing how the former is indeed signifi-
cantly more heterogeneous than the latter. In Fig. 15(c) is
also shown the distribution of posterior probabilities r;; for
both models, in addition to the naive estimate 7;; = x;;/n;;.
This naive estimate is crude, as it does not differentiate
between the different sources of error (spurious or missing
edge) and does not take into account the observed corre-
lations between the different entries. Indeed, as Fig. 15(c)
shows, it leads to very different results, which are not
correctly justified, and should be avoided.

III. INCORPORATING EXTRINSIC
UNCERTAINTY ESTIMATES

So far, we consider only situations where direct error
estimates on the edges originate from repeated measure-
ments. However, there are situations where primary error
estimates are made under different formats. Here, we
consider the scenario of Ref. [48], where an arbitrary
measurement process is made which yields uncertainty
assessments for each node pair, Q;; € [0, 1], interpreted as
conditionally independent probabilities, i.e.,
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Po(A1Q) = [[ Qi (1 - ;). (65)

i<j

In principle, we could use these probabilities as they are
and generate networks and measure their properties from
this distribution. But we could also extract from this
information the measurement process which it represents
and couple it with our reconstruction approach. This
procedure gives us the advantage of being able to use
the large-scale structure in the data to better inform our
estimates of the underlying network.

The distribution Py (A|Q) implies the following noisy
measurement process:

_ Py(A|Q)Py(Q)
P@M%=—7gar—w (66)
with normalization constant
Po) = [ PoalOIPo(@d0. (67

If we assume the priors on the edge uncertainties are
identically distributed and conditionally independent, i.e.,

=Irwey. (68)
we have
4) = []2% (1 - 0)', (69)

i<j

with Q0 = [ OP(Q)

have
0.\ 4 (1 —0;\ -4
ro@l1(%)" (25 o)
© H 0 1-0

The above depends on an unknown prior Py(Q).
Determining it would require us to delve into the details
of how this measurement is made, which is unavailable to
us if all we know is Py (A|Q). However, since it is only a
multiplicative constant that does not depend on the data or
any latent variable, it does not affect the posterior distri-
bution, and thus we do not need to determine it. The single
aspect of this distribution that is relevant is its average Q.
By allowing only for a minor violation of the Bayesian
ansatz, we can estimate this average directly from the data:

Zz<}Q11
(%)

With this value, we can couple this arbitrary noise gen-
erating process with our overall framework by taking
D = Q and obtaining the posterior distribution

dQ. Combining these together, we

P(QlA) =

0= (71)

P(Q|A)P(A)
P@Q)

where P(A) assumes that the network has been generated
by a SBM. Note that P(A|Q) # Py(A|Q), as we are
keeping the same noise-generating process but changing
our prior assumption about the data. As desired, our prior is
structured and is capable of detecting large-scale patterns—
latent groups of nodes and their probabilities of connec-
tions, as well as node degrees and hierarchical structure—to
inform our inference. This procedure also highlights the
versatility of our framework, as we are free to replace the
measurement model as appropriate.

Although our derivation is somewhat different, Egs. (65)—
(71) above are the same as in Ref. [48]. The resulting
posterior of Eq. (72), however, is different, as our approach is
nonparametric, and hence can be used to infer the number of
groups and does not involve any approximations that rely on
the network being sparse or locally treelike.

In Fig. 16, we show the results for the protein-protein
interaction network of Escherichia coli, for which error
estimates in the form of Q;; probabilities are provided [49].
The probabilities are computed in an elaborate manner by
combining seven sources of evidence for the existence of an
interaction between two proteins. As seen in the figure, our
method is able to detect prominent large-scale features that

P(A|Q) = (72)

Probability density

(c) ij or Qij

FIG. 16. (a) Inferred E. coli protein interaction network,
according to uncertain data Q, using the MMP estimator from
the posterior P(A|Q). (b) Difference between (a) and the MMP
estimator using the original uncertainties Q directly, via Py (A|Q)
[Eq. (65)]. Green edges are those that are added in (a), and red
ones are removed. [The hierarchical partition is the same as in (a)
and is shown only as a visual aid.] (c) Distribution of marginal
posterior probabilities 7z;; and original uncertainties Q;;.
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help shape the posterior distribution. The resulting pos-
terior probabilities are fairly different from the primary
error estimates, showing that these observed correlations
can be very informative for the reconstruction process.

IV. CONCLUSION

We have presented a general nonparametric Bayesian
network reconstruction framework that couples a noisy
measurement model with the SBM as a generative process.
The posterior distribution of this joint model yields simulta-
neously an ensemble of possibilities for the underlying net-
work as well as its large-scale hierarchical modular organi-
zation. As we have shown, this joint identification of the
network structure enables the existence of correlations in the
measured data to inform the network reconstruction. As a
consequence, our method can be employed also when a single
measurement of the network has been made—which is not
possible with methods that do not exploit such correlations—
and the error probabilities are unknown. This property makes
our approach applicable to the dominating set of network data
sets that do not provide primary error estimates of any kind and
can extract from them not only the most likely underlying net-
work but also error estimates for arbitrary network properties.

We have shown that our general methodology is versa-
tile, allowing for different noise models. We have consid-
ered the situation where the error probabilities are
heterogeneous, showing strong evidence for its existence
in empirical data, and demonstrated the efficacy of our
modified approach in capturing it. We have also shown how
extraneous uncertainty estimations obtained with arbitrary
methods can be incorporated into our approach, without
requiring a detailed model for their generation.

The approach we have proposed is open ended and admits
many extensions and generalizations. For example, although
the SBM can be used to exploit edge correlations in favor of
reconstruction, this can be further improved by considering
more realistic models that include other kinds of correlations
such as triadic closure [50] or latent spaces [51,52].
Furthermore, there is a wide range of possibilities for other
kinds of noise models different from the ones considered
here, including missing and duplicated nodes, and edge end-
point swaps (e.g., that can occur from crossings in imaging
data). Additionally, network data often come with a wealth
of node and edge annotations [53,54], with important special
cases being weighted [55,56] and multilayer [57,58]
networks. These extra data are potentially useful for
reconstruction, although they also contain their own meas-
urement errors. Determining the most appropriate and
effective manner to model and exploit this extra information
in reconstruction seems like fertile ground for future work.
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FIG. 17. Beta distributions for the noise magnitudes p and ¢
allow us to control the degree of prior knowledge we have on their
values. For example, the values (a,f) = (1,10) represent an
expectation that the value of p is relatively low, with a mode at 0
and average a/(a+f)=1/11~0.09. The values (a,p) =
(50,100) express the relative certainty that the value of p is
close to 1/3, whereas the values (a, ) = (5, 10) represent the
same average expectation but with less certainty. The values
(a,f) = (1,1) express the largest amount of uncertainty about
the parameter p, in which case it is uniformly distributed in unit
interval.

APPENDIX A: BETA PRIOR DISTRIBUTION

In Fig. 17 are shown examples of the Beta distribution of
Eq. (18), for different choices of the hyperparameters a
and f, illustrating their meaning with respect to the prior
knowledge assumed for the missing edge probability p
(and analogously for the spurious edge probability ¢ and its
hyperparameters x and v).

APPENDIX B: LATENT EDGE MCMC
ALGORITHM

As described in the main text, we use a MCMC
algorithm to sample from the posterior distribution

P(DIA)P(A)

PAID) = =5

(BI)

where A is the network being inferred and D is the
measurement data. Since we are using structured distribu-
tions in place of P(A), consisting of nonparametric for-
mulations of the SBM, its computation in closed form is not
tractable. Instead, we sample from the joint posterior

P(DIA)P(A|b)P(b)

P(A.b|D) = o7D) :

(B2)

where b is the partition of nodes used for the SBM. If we
sample from this distribution and ignore the values of b,
we obtain the desired marginal P(A|D) = >, P(A,b|D).
However, we are often also interested in the partition itself,
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as it gives information on the large-scale network structure,
so we often use this in our analyses as well.

The MCMC algorithm consists of making proposals of
the kind P(b'|A,b) and P(A'|A,b) for the partition and
network, respectively, and accepting them according to the
Metropolis-Hastings probability

(. P(A"BD)P(AIA",b)P(BA" B)
min <1’ P(A.b|D)P(A'|A, b)P(bA, b) > (B3)

which does not require the computation of the intractable
normalization constant P(D). In practice, at each step in
the chain, we make either a move proposal for A or b, but
not both at once. For the node partition, we use the move
proposals similar to the ones used in Refs. [14,59], where
for any given node i in group r we propose to move it to
group s (which can be previously unoccupied, in which
case it is labeled s = B 4 1) according to

P(b;=r— s|A,b) =db,p,,

e, te€
e, +¢eB’

+(1=d)(1=8,501) ) P(1li)

t=1

(B4)

where P(t]i) = >_; A0, ,/k; is the fraction of neighbors
of i that belong to group ¢, € > 0 is a small parameter which
guarantees ergodicity, and d is the probability of moving to
a previously unoccupied group. [If k; =0, we assume
P(b; =r > s|A,b) =db;p,.1 + (1 —d)(1 = 6,5.1)/B.]
This move proposal attempts to use the currently known
large-scale structure of the network to better inform the
possible moves of the node, without biasing with respect to
group assortativity. The parameters d and € do not affect the
correctness of the algorithm, only the mixing time, which is
typically not very sensitive, provided they are chosen
within a reasonable range (we used d = 0.01 and ¢ =1
throughout). When using the HDCSBM, we use the
variation of the above for hierarchical partitions described
in Ref. [14]. The move proposals above require only
minimal bookkeeping of the number edges incident on
each group and can be made in time O(k;), which is also
the time required to compute the ratio in Eq. (B3),
independent of how many groups are currently occupied.

For the network move proposals, we could have used
simple edge-nonedge flips with

. 7 (BS)
0 otherwise,

P(AL = A + 5lA) = {

with § € {—1, 1}. But, in fact, since we operate with latent
multigraphs, the moves are slightly different, as described
in Appendix D. The correctness of the algorithm does not
depend on the order or the frequency with which we
attempt to update the entries (i, j), provided they are all
eventually updated, so, in principle, we could choose them

randomly each time. However, we find that this leads to
poor mixing times, since most entries correspond to non-
edges A;; = 0 which tend to remain in that state. Instead,
we choose the entries to update with a probability given by
the current SBM,

P(i,j

(B6)

A,b) = Kkikjmy,
with

ki + 1

K=
Zj5h,-,h,-kj +1

(B7)

being the probability of selecting node i from its group b;,
proportional to its current degree plus one, and

et
Dowers +1

is the probability of selecting groups (r,s), where
€py = Ziinj(Sb,-,r(sbj,s- The above probabilities guarantee

(B8)

mrs

that every entry is eventually sampled, but it tends to probe
denser regions more frequently, which we find to typically
lead to faster mixing times. This sampling can be done in
time O(1), simply by keeping urns of vertices and edges
according to the group memberships. The time required to
compute the ratio in Eq. (B3) is also O(1) for the DCSBM
and O(L) for the HDCSBM, where L is the hierarchy
depth, again independent of the number of occupied
groups.

When combining both move proposals above for the
partition and network, the time required to perform V node
proposals and M edge proposals is O({k)V + M), where
(k) is the average degree, which allows for the inference
of very large networks, with up to millions of edges.
A reference implementation of the above algorithm is freely
available as part of the graph-tool library [60].

APPENDIX C: NONPARAMETRIC SBM
FORMULATION

Here, we give a summary of the nonparametric SBMs
used in this work, which are derived in detail in Ref. [14].
We begin with the Poisson DCSBM likelihood [13]:

0,04, A,
e j(eiejﬂb,ub_,-) J

4,0.b) :H A
-

i<j

PA

(2 Ay, p, /2)12
; (Aii/2)! ’

(C1)

which generates multigraphs with A;; € N, and with self-
loops allowed. By choosing the arbitrary parametrization
> 66, , = 1 for every group r, 1,, becomes the expected
number of edges between groups r and s, and 6; is
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proportional to the expected degree of node i, 6, =
(k;)/ > Ap, s- We use the noninformative prior for 6,

POp) =[[(n, - 1)1 <Zei5bi,r - 1>, (C2)
and A,

P(lb) = [ Je=/ 02/ (1 + 6,,)2

r<s

(C3)

with 2 =2E/B(B + 1), which results in the integrated
marginal probability

P(Alb) = / P(AI1,0,b)P(4]b) P(0]b)did0
ZE r<s-rs err
- (2 + 1)ETBBH/ 11:[[,<,Az/ 11:1114”!» (C4)
H@n;ilxnk (c5)

where k; = >, A;; is the degree of node i. As shown in

Ref. [14], the above is equivalent to a microcanonical
model given by

P(AIB) = P(Alk.e.b)P(kle.b)P(elb).  (C6)
with

Plafk.e) = ressles 0 )

D) e

P(elb) = AF /(A + 1)E+BBHD/2 (C9)

being the corresponding noninformative priors. Following
Ref. [14], we replace the microcanonical prior for the
degrees with

P(kle,b) =

P(kln)P(nle.b). (C10)

where n = {n} are the degree frequencies of each group,
with #n; being the number of nodes with degree k that
belong to group r,

!
P(kin) = H%ﬁ (1)

is a uniform distribution of degree sequences constrained
by the overall degree counts, and finally

(C12)

= []ate

is the distribution of the overall degree counts. The quantity
q(m,n) is the number of different degree counts with the
sum of degrees being exactly m and that have at most n
nonzero counts, given by

g(m,n) =q(m,n—1)+qg(m—-n,n). (C13)

For the node partition, we use the prior

Dt (N1
N! B-1

(C14)

P(b) = P(b|n)P(n|B)P(B)

which is agnostic to group sizes.

The HDCSBM is obtained by replacing the uniform
prior for P(e|b) by a nested sequence of SBMs, where the
edge counts in level / are generated by a SBM at a level

above:
my(np+1)/23) !
l+1/2 >> ’

P(ejler1.b1) :g <<zi,}tlll )) H <<
(C15)

where (") = ("*~!) is the multiset coefficient. The prior
for the hierarchical partition is obtained using Eq. (C14) at
every level. We refer to Ref. [14] for further details.

Directed variations of the model above are straightforward
[14], together with their noise models considered in the text,
which simply require sums and products to go over all
directed node pairs. We omit the expressions here for brevity,
but we use the directed models whenever appropriate.

The hierarchical model above is constructed to be
agnostic about several large-scale aspects of the network,
including the degree distribution, the distribution of group
sizes, and the mixing patterns. Because of its nonparametric
nature, it can be used to infer the dimensions of the model,
including the number of groups and hierarchy shape. The
HDCSBM has the additional advantage that it can detect
small but statistically significant groups in large networks,
where the maximum number of detectable groups scales
with O(N/InN), as opposed to the O(v/N) obtainable
with nonhierarchical models [18,19].

APPENDIX D: ADAPTING MULTIGRAPH
MODELS TO SIMPLE GRAPHS

The SBM variations considered in the previous section
generate multigraphs with self-loops; however, the noise
models considered in this work operate on simple graphs.
The usual justification for the use of multigraph models on
simple graph data is that in the sparse case they are
approximately the same, since the probability of multiple
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edges and self-loops being generated is very small.
Although this is true for uniform SBMs, like the planted
partition model considered in Sec. II C 4, it may not be true
for the DCSBM when the degree distribution is sufficiently
broad. In this situation, the simple and multigraph ensem-
bles are no longer equivalent [61-63], and the use of the
multigraph model in this case may lead to biases.
Unfortunately, the simple graph formulations of the
DCSBM cannot have their integrated likelihoods computed
in closed form.

Here, we adapt the multigraph models to simple graphs
in a tractable and simple way by generating multigraphs
and then collapsing the multiple edges. In other words, if G
is a multigraph with entries G;; € N, the collapsed simple
graph A(G) has binary entries

I if G;; > 0and i # J,

. (D1)
0 otherwise.

A, j(Gij) = {
Therefore, if G is a multigraph generated by P(G|f), where
@ are arbitrary parameters, then the corresponding col-
lapsed simple graph A is generated by

P(A]0) = > P(A.G|0) (D2)
G
= P(A[G)P(G|0), (D3)
G
with
(1 ifA=A(G).
PAIG) = {O otherwise. (b4)

Even if P(A|@) cannot be computed in closed form, the
joint distribution P(A,G|0) = P(A|G)P(G|6) is trivial,
provided we have P(G|f) in closed form. Therefore,
instead of directly sampling from the posterior distribution

P(DIA)P(A,b)

P(A,b|D) = , D5
(A.0D) = ==L 0 (DS)
we sample from the joint posterior
P(DI|A)P(A|G)P(G.b
P(4.G.bip) = LPAPAIGPGD) = )

P(D) ’

using MCMC, treating the values G;; as latent variables,
and then we marginalize

P(A.b|D) =) P(A.G.b|D), (D7)
G

which is done simply by sampling from P(A, G,b|D) and
ignoring the actual magnitudes of the G;; values and the
diagonal entries. This protocol yields an almost identical
MCMC algorithm to the one described in Appendix B, with

the only difference that we keep track of the values of G;;,

which are no longer binary but automatically give us A;;
[which are used for the computation of P(D|A)]. The move
proposals of the entries of G;; are done by unity changes:

1/2 if G;; >0,
P(G;-J-:G,-j+5|G): 1 if G;;=0and6=1,
0 otherwise,
(D8)

again for 6 € {—1,1}.

In the case of the DCSBM, the degree correction
happens for the multigraph G and only indirectly for A.
But, since our model is nonparametric and the degrees of G
are also generated from their own priors, it is also a
perfectly valid and useful degree-corrected model for A
as well.

APPENDIX E: DATA SETS

Here, we give brief descriptions of the data sets used in
this work, with properties listed in Tables I and II.

1. Data without primary error estimates

Karate club.—Social network between 34 members of a
karate club [29]. The version used in Table I is the same one
used in Ref. [30], with Ay;34 = 1 and hence 78 edges in
total. In Table II, it is assumed that each repeated entry of
the adjacency matrix reported in Ref. [29] amounts to a
different measurement, so that n;; = 2 and x;; = 2A;; for
all (i, j), except for xp334 = .

9/11 terrorists.—Social associations between 62 terro-
rists responsible for the 9/11 attacks [25,26].

American football—Network of American football
games between division IA colleges during the regular
season in fall of 2000 [30].

Network scientists.—Coauthorship network of scientists
working on network science [64].

C. elegans neural.—Directed neural network of the C.
elegans worm [39], manually compiled by Watts and
Strogatz [40], based on the original data. The five nodes
with zero degree omitted in Ref. [40] are included in our
analysis, resulting in N = 302 nodes in total.

Malaria genes.—Bipartite gene-substring association
network for malaria [65].

Power grid.—Western state power grid of the United
States [40].

Political blogs.—Citations between political blogs dur-
ing the 2004 presidential election in the United States [66].

DBLP citations.—Citation network of DBLP, a database
of scientific publications [67].

Open flights.—Directed network of flights between
worldwide airports, collected from the community-driven
Web site [68].
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Reactome.—Network of protein-protein interactions in
humans [69].

cond-mat.—Network of collaborations in papers pub-
lished in the cond-mat section of the arXiv.org preprint Web
site in the period spanning from January 1, 1995 to March
31, 2005 [41].

Enron email.—Emails sent between employees of Enron
between 1999 and 2003 [70].

Linux source.—Network of Linux source code files, with
directed edges denoting that they include each other [21].

Brightkite.—Online social network from the defunct
brightkite Web site.

PGP.—Global web of trust of the pretty-good-privacy
(PGP) encryption protocol. Nodes are public keys, and
directed edges indicate that one key digitally signed
another [71].

Internet AS.—Directed network of internet autonomous
systems, ca. 2009, as measured by the Center for Applied
Internet Data Analysis (CAIDA) [72].

Web Stanford.—Directed network of hyperlinks between
the web pages from the Web site of Stanford University [73].

Flickr—Network of images in the image-sharing site
Flickr [74], where two images are connected if they share
metadata, such tags, groups, or location [75].

2. Data with primary error estimates

Reality mining.—Proximity interactions between volun-
tary students over time [45]. As measurements, we consider
the state of the network during eight consecutive Wednesdays
in March and April of 2005.

School friends.—Directed network of friendship between
primary and high-school students [76]. Each student is asked
repeatedly to list his or her best five female and five male
friends.

Human connectome.—Neuronal connections in the
human brain, measured for 418 individuals, each of which
we consider as a separate measurement [46].
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