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We provide the first quantitative comparison between Barkhausen noise experiments and recent
predictions from the theory of avalanches for pinned interfaces, both in and beyond mean field. We study
different classes of soft magnetic materials, including polycrystals and amorphous samples—which are
characterized by long-range and short-range elasticity, respectively—both for thick and thin samples, i.e.,
with and without eddy currents. The temporal avalanche shape at fixed size as well as observables related to
the joint distribution of sizes and durations are analyzed in detail. Both long-range and short-range samples
with no eddy currents are fitted extremely well by the theoretical predictions. In particular, the short-range
samples provide the first reliable test of the theory beyond mean field. The thick samples show systematic
deviations from the scaling theory, providing unambiguous signatures for the presence of eddy currents.
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Barkhausen noise in soft magnets originates from the
jerky motion of magnetic domain walls (DWs), and is
characterized by scale-free power-law distributions of
magnetization jumps [1–6]. It is the earliest and most
scrutinized probe for avalanche motion, an ubiquitous
phenomenon present in systems such as fluid contact-line
depinning [7,8], brittle fracture fronts [9,10], and pinned
vortex lines [11]. In all these systems the motion of an
overdamped elastic interface (of internal dimension d)
driven in a quenched medium was proposed as an efficient
mesoscopic description. However, until now, analytical
predictions allowing for a detailed comparison with experi-
ments have been scarce, due to the difficulty in treating
collective discontinuous jumps in presence of many meta-
stable states.
Toy models have thus been developed, capturing essen-

tial features at the level of mean field (MF). One celebrated
example is the ABBM model, where the domain wall is
modeled as a single point in an “effective” random force
landscape performing a (biased) Brownian motion [12–14].
Refinements based on infinite-range models were later
proposed [15], leading to similar physics [14,16]. These
MF toy models predict an avalanche-size distribution
PðSÞ ∼ S−τ with τ ¼ τMF ¼ 3=2 and a duration distribution
PðTÞ ∼ T−α with α ¼ αMF ¼ 2.
The theory of interface depinning provides a predictive

universal framework for the avalanche statistics. It involves
two independent exponents, the roughness exponent
ζ and the dynamical exponent z. The distribution exponents
α and τ were conjectured from scaling, as in the Narayan-
Fisher (NF) conjecture τ ¼ 2 − μ=ðdþ ζÞ and α ¼ 1þ
ðdþ ζ − μÞ=z, where μ describes the range of interactions.

The upper-critical dimension at which ζ ¼ 0 and below
which mean-field models fail is duc ¼ 4 for short-range
elasticity (SR, μ ¼ 2) and duc ¼ 2 for long-range elasticity
(LR, μ ¼ 1) [16].
In Barkhausen noise experiments, two distinct families

of samples were identified, consistent with these predic-
tions [17]. In polycrystalline materials, the DWexperiences
strong anisotropic crystal fields leading to LR elasticity. In
the D ¼ dþ 1 ¼ 2þ 1 geometry this system behaves
according to MF theory. In amorphous samples, SR
elasticity prevails over a negligible LR elasticity, and the
avalanche exponents agree with the NF prediction. In both
cases, a relevant role is played by the demagnetizing field,
which acts as a cutoff for large avalanches [17]. These
mean-field predictions were tested in soft magnetic thin
films, where the retarding effects of eddy currents (ECs) of
bulk samples are negligible [6].
Recently, it became possible to compare theory and

experiments of avalanches well beyond scaling and the
value of exponents. On the theoretical side, the functional
renormalization group of depinning was extended to
calculate a host of avalanche observables [18–23].
Examples are the avalanche shape at fixed size and duration
as well as the joint size distribution both in mean field and
beyond, even including retardation effects due to eddy
currents [24]. On the experimental side, the avalanche
shape was studied in magnetic systems [6,25], in fracture
and imbibition [26]. Despite these experiments, most of the
recent predictions of the theory have not yet been tested
quantitatively, and especially not to high accuracy.
The aim of this Letter is to provide new and sensitive

tests of these theoretical predictions in soft ferromagnets.
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This is possible because we detected in our Barkhausen
experiment a high number of avalanches, obtaining a robust
statistics. Diverse magnetic samples have been explored,
corresponding to the two universality classes (LR and SR),
with and without EC effects. We focus our attention on the
avalanche shape at fixed size and observables linked to the
joint distribution of sizes and durations. The SR and LR
samples with no ECs fit extremely well with the theoretical
predictions. In particular, the SR samples for the first time
provide a significant test of the theory beyond mean field.
The effect of eddy currents on the scaling properties is also
investigated.
We start by presenting the predictions from the theory of

elastic interfaces that we aim to test [20–23]. These
predictions are calculated for avalanches following an
infinitesimal increase in the field (kick). They also apply
to the stationary, quasistatic regime in the limit of slow
driving, as performed in experiments [22]. The interface
model involves a (small) mass m2, which flattens the
interface beyond the scale 1=m, playing the same role as
the demagnetizing field in setting the cutoff scale.
Associated to the two independent exponents ζ and z
are two independent scales Sm ≃m−dþζ and τm ≃m−z for
sizes and durations. The size scale Sm can be directly
measured in the experiments as

Sm ¼ hS2i
2hSi ; ð1Þ

where h…i denotes expectation values with respect to
PðSÞ. On the other hand, the time scale τm cannot be
determined analytically, and has to be guessed from data, as
we explain later. We denote by uðx; tÞ the displacement
field of the interface, x ∈ Rd, and by _uðtÞ ¼ R

ddx _uðx; tÞ
the time derivative of the total swept area. The avalanche
size is S ¼ R

T
0 dt _uðtÞ.

The simplest observables we can consider are the
moments of the average size at fixed duration

hSniT ¼ ðSmÞngnðT=τmÞ; gnð ~TÞ≃ ~T→0 cn ~T
nγ; ð2Þ

whose universal behavior for small avalanches defines the
exponent γ. Here, ~T ¼ T=τm is the rescaled avalanche
duration. In mean field, one finds

γMF ¼ 2; cMF
1 ¼ 1

3
; cMF

2 ¼ 2

15
; ð3Þ

and the scaling functions are

gMF
1 ð ~TÞ¼2 ~T cothð ~T=2Þ−4;

gMF
2 ð ~TÞ¼2 ~Tcsch2

�
~T
2

�

f ~T½coshð ~TÞþ2�−3sinhð ~TÞg: ð4Þ

Beyond mean field, one finds

γ ¼ dþ ζ

z
; c1 ¼ cMF

1 þ 11 − 3γE − ln 4
81

ϵ; ð5Þ

where the expression for c1 has been calculated to first
order in ϵ ¼ duc − d. This leads to c1 ≈ 0.527 for ϵ ¼ 2, as
in the case of μ ¼ 2 and d ¼ 2 (γE ≈ 0.577).
Another observable of interest is the averaged avalanche

duration at fixed size. In mean field, it is given by

hTiS=τm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πS=Sm

p
; ð6Þ

which is consistent with the general expected scaling
h ~TiS ∼ S1=γ , with γ ¼ γMF. Remarkably, within mean field,
Eq. (6) holds for any value of the ratio S=Sm.
Let us now consider the average temporal avalanche

shape at fixed size, h _uðtÞiS, which takes the form

h _uðtÞiS ¼
S
τm

�
S
Sm

�
−1=γ

f

�
t
τm

�
Sm
S

�
1=γ

�

; ð7Þ

where fðtÞ is a universal scaling function, andR
∞
0 dtfðtÞ ¼ 1. In mean field, fðtÞ is independent of
S=Sm [24] and reads

fMFðtÞ ¼ 2te−t
2

: ð8Þ

Beyond MF, the function fðtÞ has been obtained to OðεÞ
for SR elasticity. Here, we use the convenient form

fðtÞ ≈ 2te−Ct
δ
B exp

�

−
ϵ

9

�
δfðtÞ
fMFðtÞ

− t2 lnð2tÞ
��

; ð9Þ

where the function δfðtÞ is displayed in Eq. (34) of
Ref. [23] and B is chosen such that

R∞
0 dtfðtÞ ¼ 1, an

approximation exact to OðεÞ. Equation (9) has asymptotic
behaviors

fðtÞ≃t→0 2Atγ−1; ð10Þ

fðtÞ≃t→∞ 2A0tβe−Ctδ ; ð11Þ

with A¼1þðϵ=9Þð1−γEÞ, A0¼1þðϵ=36Þð5−3γE−ln4Þ,
β ¼ 1 − ϵ=18, C ¼ 1þ ðϵ=9Þ ln 2, and δ ¼ 2þ ϵ=9.
To compare these theoretical predictions to our experi-

mental results, we first need to make use of dimensionless
units, thus rescaling sizes and durations by Sm and τm,
respectively. The parameter Sm is analytically defined by
Eq. (1); we tested that it leads to a consistent comparison of
the measured size distribution PðSÞ with the theory, see the
Supplemental Material [27]. In particular, we verified that
the cutoff occurs at 4Sm, as predicted. On the other hand, τm
can only be inferred using (i) the expression of Eqs. (2) and
(6) and (ii) the data of the average shape h _uðtÞiS. In absence
of ECs, the estimation of τm is made by matching both
kinds of data with the analytical expressions, giving a
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consistent and robust estimation of the parameter [28]. In
presence of ECs, we use the procedure (i) to estimate τm.
We analyzed the avalanche statistics in different classes

of materials. Two of them are thin films with negligible
eddy-current effects: a LR polycrystalline Ni81Fe19
Permalloy (Py) with a thickness of 200 nm (τm ¼ 39 μs)
and a SR amorphous Fe75Si15B10 (FeSiB) alloy with a
thickness of 1000 nm (τm ¼ 38 μs) [30,31]. The other two
samples are ribbons with a thickness of about 20 μm, where
eddy-current retarding effects are well known: a LR
polycrystalline FeSi alloy with Si ¼ 7.8% (τm ¼ 2 ms),
and a SR amorphous Fe64Co21B15 (FeCoB) alloy, mea-
sured under a small tensile stress of 2 MPa (τm ¼ 0.5 ms)
[5,17]. All samples have a space dimensionD ¼ 2þ 1; the
two LR materials showMF exponents, while the other ones
have NF exponents, with ϵ ¼ 2. Further details on the
samples and the experiments are given in the Supplemental
Material [27].
Figures 1 and 2 report the average size as a function of

avalanche duration for LR and SR samples, respectively,
compared to the theoretical prediction of Eqs. (4) and (5).
In the absence of eddy currents, the correspondence is
almost perfect, except for the highest ðS; TÞ values. For LR
samples (Fig. 1), the mean-field prediction (4) crosses over
from ∼ ~T2 to ∼ ~T at large avalanche sizes, a trend which
seems to agree with our data. It is often argued that a linear
dependence can also arise from the superposition of a
multiplicity of active DWs. Indeed some of the largest
avalanches are a superposition of smaller avalanches
occurring in different parts of the sample, triggered by
the relatively large change of the magnetization [32].
Furthermore, the retarding effect of eddy currents makes

large avalanches (say, for S > Sm) even longer, so that the
average size further deviates from the theoretical predic-
tion, especially in samples with more ECs, as seen from
Fig. 1. Note that the agreement with the MF predictions is
also quite good at the level of fluctuations (i.e., the second
moment hS2iT in the inset of Fig. 1). For the SR samples in
Fig. 2, we plot the prediction for small ~T, in good
agreement with the data up to the size cutoff 4Sm, i.e.,
hSiT=Sm ∼ 4. At large ~T we expect a similar bending to a

FIG. 1. Normalized average size hSiT=Sm of Barkhausen
avalanches in the FeSi ribbon (blue dots) and the Py thin film
(red dots) as a function of the normalized duration ~T ¼ T=τm.
The continuous line is the theoretical prediction gMF

1 of Eq. (4).
For the ribbon, the deviation at large durations is more evident
due to effect of the eddy currents. The inset shows the second
moment hS2iT=S2m compared to the prediction gMF

2 of Eq. (4).

FIG. 2. Normalized average size hSiT=Sm of avalanches
in the FeCoB ribbon (blue dots) and the FeSiB thin film (red dots)
as a function of T=τm. The continuous line is the theoretical
prediction of Eq. (5), with ϵ¼2, so that hSiT=Sm ∼
0.527ðT=τmÞγ , with γ ∼ 1.76. The ribbon shows a larger deviation
due to eddy currents. A comparison with the expected linear
behavior at large ~T is indicated by the dashed line. Remarkably,
this deviation occurs at sizes larger than the size cutoff 4Sm, i.e.,
for hSiT=Sm > 4.

FIG. 3. Normalized average duration hTiS=τm of avalanches in
the FeSi ribbon (blue dots) and the Py thin film (red dots) as a
function of the normalized size S=Sm. The continuous line is the
theoretical prediction of Eq. (6).

PRL 117, 087201 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

19 AUGUST 2016

087201-3



linear behavior, although there are presently no detailed
predictions for the crossover.
The mean avalanche duration at fixed size, hTiS, is

shown in Fig. 3 for LR samples. For the film, it shows an
almost perfect agreement with the MF prediction of Eq. (6),
indicating that ECs are indeed negligible, while the effect of
ECs is clearly visible in the ribbon.
Collapsing the experimental data of the average shapes at

fixed size h _uðtÞiS gives a powerful alternative way to
estimate the exponent γ, as reported in Figs. 4 and 5.
Here we obtain the same exponents as from the average size

measurements hSiT ; i.e., γ ¼ 2 and γ ¼ 1.76 for LR and
SR, respectively. The collapsed average shapes correspond
remarkably well to the theoretical predictions of Eqs. (8)
and (9), including the behavior in the tails (shown in
the SR case in the insets of Fig. 5). In the Supplemental
Material [27], we further verify that neither the collapse
nor the quantitative fit can be achieved using the MF
prediction.
Finally, it is well known that relaxation of eddy currents

introduces a slow time scale into the dynamics, stretching
avalanches in time [24]. In Fig. 6, we have obtained an
approximate collapse for the SR case in presence of eddy
currents, using the theoretical value of γ ¼ 1.76. It is
manifest that the resulting curve is different from the
one predicted in absence of retardation effects. Hence, this
is another unambiguous method to detect the presence of
ECs, similarly to the leftward asymmetry of the temporal
avalanche shapes at fixed durations [25]. To go further and
obtain predictions for the average shape in presence of
ECs is difficult, as the shape strongly depends on the
detailed parameters of the eddy currents. A step in that
direction was obtained within MF in Ref. [24] for a
particular model of retardation. Detailed comparison with
experiments involve nonuniversal scales, and is left for a
future publication.
In conclusion, we have shown how the data from

Barkhausen noise experiments can be analyzed and com-
pared to the most precise recent theoretical predictions. This
provides quantitative and fundamental tests of the theory
of avalanches beyond scaling exponents. The prediction of
universality will also lead to a better characterization of
magnetic systems, allowing us tomeasure its dimensionality
and, via the deviations from the theory, effects of multiple
avalanches or eddy currents.

FIG. 4. Scaling collapse of the average shapes at fixed
avalanche sizes h _uðtÞiS, according to Eq. (7), in the Py thin
film. The continuous line is the mean-field universal scaling
function in Eq. (8).

FIG. 5. Scaling collapse of the average shape at fixed avalanche
sizes h _uðtÞiS, according to Eq. (7), in the FeSiB thin film. The
continuous line is the prediction for the universal SR scaling
function of Eq. (9). The insets show comparisons of the tails of
the data with the predicted asymptotic behaviors of Eqs. (10)
and (11), setting ϵ ¼ 2, with A ¼ 1.094, A0 ¼ 1.1, β ¼ 0.89,
C ¼ 1.15, and δ ¼ 2.22.

FIG. 6. Scaling collapse of the average shape at fixed avalanche
sizes h _uðtÞiS in the FeCoB ribbon using the theoretical values of γ
and τm, as in Fig. 2. The collapse deviates from the universal
functions predicted for SR systems (continuous black line) in the
absence of eddy currents.
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