
Experimental Estimation of Entanglement at the Quantum Limit

Giorgio Brida,1 Ivo Pietro Degiovanni,1 Angela Florio,1,2 Marco Genovese,1 Paolo Giorda,3 Alice Meda,1

Matteo G.A. Paris,4,5 and Alexander Shurupov6,1,7

1INRIM, I-10135, Torino, Italy
2Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
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Entanglement is the central resource of quantum information processing and the precise characteriza-

tion of entangled states is a crucial issue for the development of quantum technologies. This leads to the

necessity of a precise, experimental feasible measure of entanglement. Nevertheless, such measurements

are limited both from experimental uncertainties and intrinsic quantum bounds. Here we present an

experiment where the amount of entanglement of a family of two-qubit mixed photon states is estimated

with the ultimate precision allowed by quantum mechanics.
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Introduction.—Entanglement is the central resource of
quantum information processing and the precise character-
ization of entangled states is a crucial issue for the develop-
ment of quantum technologies. In turn, quantification and
detection of entanglement have been extensively investi-
gated, see [1–3] for a review, and different approaches have
been developed to extract the amount of entanglement of a
state from a given set of measurement results [4–7]. Of
course, in order to evaluate the entanglement of a quantum
state one may resort to full quantum state tomography [8]
that, however, becomes impractical in higher dimensions
and may be affected by large uncertainty [9]. Other meth-
ods, requiring a reduced number of observables, are based
on visibility measurements [10], nonlocality tests [11,12],
entanglement witnesses [13–15] or are related to Schmidt
number [16,17]. Many of them found an experimental
application [18–21], also in the presence of decoherence
effects [22,23].

Any quantitative measure of entanglement corresponds
to a nonlinear function of the density operator and thus
cannot be associated to a quantum observable. As a con-
sequence, ultimate bounds to the precision of entanglement
measurements cannot be inferred from uncertainty rela-
tions. Any procedure aimed to evaluate the amount of
entanglement of a quantum state is ultimately a parameter
estimation problem, where the value of entanglement is
indirectly inferred from the measurement of one or more
proper observables [24]. An optimization problem thus
naturally arises, which may be properly addressed in the
framework of quantum estimation theory [25–28], which
provides analytical tools to find the optimal measurement
and to derive ultimate bounds to the precision of entangle-
ment estimation.

Preliminaries.—Suppose one has a family of quantum
states %� labeled by the value of entanglement, say nega-
tivity [1,29] � ¼ k%�

�k, where � denote partial transposi-
tion and k � � � k trace norm, and wants to estimate � from
the outcomes N repeated measurements of the (general-
ized) observable described by a positive operator-valued
measure (POVM) �x,

P
x�x ¼ 1. Any inference strategy

amounts to find an estimator, i.e., a map �̂ð�Þ from the
experimental sample to the parameter space. According to
the Cramer-Rao theorem the precision of any estimation
procedure, i.e., the variance of any unbiased estimator
based on the measurement of �x, is bounded by the
inequality Varð�̂Þ � ½NF���1, where F� ¼ P

xpðxj�Þ�
½@� lnpðxj�Þ�2 is the Fisher information and pðxj�Þ ¼
Tr½%��x� is the conditional probability of getting the out-
come x when the actual value of entanglement is �. Upon
maximizing the Fisher information over all the possible
quantum measurements we arrive at the quantum Fisher
information (QFI) H� ¼ Tr½L2

�%�� expressed in terms of
the symmetric logarithmic derivative L�, i.e., the self-
adjoint operator defined by @�%� ¼ 1

2 ðL�%� þ %�L�Þ. We

have F� � H� and the ultimate bounds to precision are
determined by the quantum Cramer-Rao bound (QCRB)
Varð�̂Þ � ½NF���1 � ½NH���1. The meaning of the
QCRB is that quantum mechanics does not allow entan-
glement estimation with arbitrary precision. In turn, QCRB
represents the ultimate bound to the precision, at fixed
number measurements, of any procedure aimed to estimate
the amount of entanglement of a state of the family %�. For
a multiparameter family of states one evaluates the QFI
matrix H�� ¼ Tr½12 ðL�L� þ L�L�Þ%� and the ultimate

bound to estimation of entanglement at fixed value of the
other parameters may be written as above with the replace-
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ment H�1
� ! H�1

�� where H�1 is the inverse of the QFI
matrix.

In order to optimally estimate entanglement we need
(i) a measurement with Fisher information F� ¼ H� equal
to the QFI and (ii) an estimator saturating the Cramer-Rao
bound [30]. In [24], bounds to precision have been eval-
uated for several classes of pure and mixed quantum states.
Here we demonstrate experimentally for the first time that
optimized correlations measurements allow for the estima-
tion of entanglement with the ultimate precision imposed
by quantummechanics. In particular, we present the results
of an experiment to estimate the amount of entanglement
(negativity) of two-qubit photon states. This represents a
substantial advance, paving the way for further progresses.
In fact, with a suitable choice of correlation measurements
one can devise a procedure to optimally estimate entangle-
ment for a generic class of two-photon entangled states.

Experimentals.—The family of entangled states we are
dealing with is made of polarization entangled photon pairs
obtained by coherently superimposed type-I parametric
down-conversion (PDC) generated in two beta-Barium
Borate (BBO) crystals [18]. The experimental setup is
schematically depicted in Fig. 1. A continuous wave argon
pump laser beam with wavelength � ¼ 351 nm is filtered
with a dispersion prism and then passes through a Glan-
Thompson prism that selects a horizontal polarization. A
half-wave plate WP0 rotates the polarization by the angle
�, which in turn determines the amount of entanglement in
the output state. PDC light is generated by two thin type-I
BBO crystals (l ¼ 1 mm), positioned with the planes that
contain optical axes orthogonal to each other. PDC occurs
only in crystal 1 (2) if the polarization of the pump beam is
horizontal (vertical).

The crystals are cut for collinear frequency degenerate
phase matching at working wavelength and the phase shifts
due to ordinary and extraordinary path in the crystals are
compensated by rotating the quartz plates (QP). The pump
is stopped by a filter (UVF), and the biphoton field is split
on a nonpolarizing 50-50 beam splitter (BS). The measure-
ment stage consists in projecting the beams on vertical
polarizers after passing through half-wave plates (WP1,
WP2). After spectral selection by interference filters (IF)

centered at the degeneracy 702 nm (FWHM ¼ 3 nm),
biphotons are focused on commercial single photon detec-
tors (D1, D2). The detectors’ outputs are registered by
means of a coincidence scheme (CC) with a window
time of 1 ns. To maintain stable phase-matching condi-
tions, BBO crystals and QP are placed in a closed box,
which is kept heated at a fixed temperature by a feedback
loop control system.
Family of entangled states.—In ideal conditions our

setup generates entangled pairs of the form jc �i ¼
cos�jHHi þ sin�jVVi (H and V denoting horizontal
and vertical polarizations, respectively). The angle �
may be tuned by rotating the pump polarization with
the half-wave plate WP0. Overall, the output states are
described by the family of density matrices %� ¼
pjc �ihc �j þ ð1� pÞD�, where the small fraction

(1� p) of a separable mixture D� ¼ cos2�jHHihHHj þ
sin2�jVVihVVj is added to take into account the decoher-
ence mechanisms occurring in the experimental setup.
These are mostly due to fluctuations of the relative phase
between the two polarization components, which them-
selves derive from residual temperature fluctuations. The
model has been validated by two-qubit polarization tomog-
raphy [31,32] providing full state reconstruction. By tuning
� with WP0 one may generate states %� with different
negativity � ¼ p sin2� and purity � ¼ Tr½%2

�� ¼
1� ð1� p2Þ sin2�. Upon inverting these relations and
expressing the family of states in terms of � and � or p
wemay evaluate the QFI matrix. The QCRB turns out to be
a function of � only, H�1

�� ¼ ð1� �2Þ�1.
Estimation of entanglement.—We now describe our de-

tection strategy and show it allows entanglement estima-
tion with precision saturating the QCRB independently on
the purity. The measurement setup allows for the projec-
tion measurements f�xg onto following two-qubit states:

�xð�;	Þ ¼
���������þ s




2

��
�þ s




2

��������
�
��������	þ s0




2

��
	þ s0




2

��������
where x ¼ fsþ 2s0g, s, s0 ¼ 0, 1. As already pointed out
before, the polarization angles �, 	 are set by means of
vertical polarizers and WP1 and WP2 mounted on preci-
sion rotation stages with high resolution and fully motor
controlled. Let us first illustrate precision analysis assum-
ing the generation of the pure states jc �i. In this case the

estimation of the negativity � ¼ sin2� reduces to a mea-
surement of coincidence rates in a two-particle interfer-
ometer setting [10]. Indeed, upon inspecting the expression
of the probabilities pxð�;�;	Þ ¼ hc �j�xð�;	Þjc �i, x ¼
0, 1, 2, 3 one finds out that unbiased estimators for the
negativity can be written as �̂ ¼ Vð�;	Þ csc2� csc2	�
cotð2�Þ cotð2	Þ, where Vð�;	Þ ¼ ðk0 � k1 � k2 þ k3Þ=K
is the two-qubit quantum correlation (QC) built in terms of

FIG. 1 (color online). Experimental setup to generate polar-
ization entangled photon pairs with variable entanglement and
estimate its value with the ultimate precision allowed by quan-
tum mechanics.
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the recorded coincidence counts kx � kxð�;	Þ, K ¼P
xkx, x ¼ 0, 1, 2, 3. The Fisher information of the

measurement is given by F� ¼ P
xpxð�;�;	Þ�

½@� logpxð�;�;	Þ�2 and it equals the QFI, H� for the
estimation of negativity. Our QC estimator saturates the
QCRB for �, 	 ¼ 	
=4 and thus �̂ ¼ Vð	
=4;	
=4Þ,
which can be measured with the above experimental setup,
represent optimal estimators of entanglement. In our im-
plementation we set � ¼ �
=4 and 	 ¼ 
=4 indepen-
dently on �. In each run j ¼ 1; . . . ;M ¼ 30 one records
the vector kj ¼ fk0;j; k1;j; k2;j; k3;jg of coincidence as mea-

sured for the given set of parameters by the coincidence
circuit during a single time window (10 seconds). For large
values of the total number of coincidences Kj ¼ P

xkx;j,

the expected value of the coincidence rate kx;jð�;	Þ=Kj

converges to the probability pxð�;�;	Þ and the optimal
estimator can be realized in terms of the coincidences’
vector: �̂ � �̂ðkjÞ. We first observe that for finite Kj’s the

uncertainty in the estimation of entanglement are mostly
due to fluctuations �kx in the coincidence counts kx;j
around their average values hkxi ¼

P
jkx;j=M. Thus, we

want to establish under which conditions on the fluctua-
tions �kx the variance of the estimator �̂ðkjÞ saturates the
QCR bound. Using standard uncertainty propagation with
the derivatives @x � @=@kx evaluated for kx � hkxi, and
assuming independence among fluctuations at different
angles, we have Varð�̂Þ ¼ P

xj@x�̂j2�k2x ¼ 4½ðhk0i þ
hk3iÞ2ð�k21 þ �k22Þ þ ðhk1i þ hk2iÞ2ð�k20 þ �k23Þ�=hKi4.
If we now assume that the counting processes have a
Poissonian statistics, i.e. �k2x ¼ VarðkxÞ ¼ hkxi, then it is
straightforward to prove that

Var ð�̂Þ ¼ 4ðk0 þ k3Þðk1 þ k2Þ=hKi3 ¼ ð1� �̂2Þ=hKi;

i.e., QC measurements allow for optimal estimation of
entanglement with precision at the quantum limit. Since
the QCRB may be written as Varð�̂Þ � ð1� �2Þ=N for a
wide range of two-qubit families of states [24], the above
calculations suggest that this is a general result. In other
words, given a source emitting polarization two-qubit
states with coincidence counting statistics satisfying the
Poissonian hypothesis, then the experimental setup of
Fig. 1 allows for optimal estimation of entanglement at
the quantum limit by means of a QC estimator.

This can be extended to the case of output states %�. In
fact, upon evaluating the probabilities pxð�;�;	Þ ¼
Tr½%��xð�;	Þ�, one sees that �̂ ¼ Vð�
=4; 
=4Þ is still
an optimal (unbiased) estimator of entanglement. We have
thus collected M ¼ 30 repeated acquisitions of coinci-
dence vector kj ¼ fk0j; k1j; k2j; k3jg, then we have random-

ized the composition of kj over the sequence of

measurements to avoid accidental correlations, and finally
we have estimated entanglement as the sample mean h�̂i ¼P

j �̂ðkjÞ=M. The corresponding uncertainty has been

evaluated by the sample variance Varð�̂Þ ¼ P
j½�̂ðkjÞ �

h�̂i�2=ðM� 1Þ. In order to compare the estimated value
of entanglement with the actual one we need to estimate
also the additional parameter p, quantifying the amount of
mixing introduced by decoherence processes. An unbiased
estimator p̂ for this parameter may be obtained by mea-
suring QC with a different set of angles, e.g., upon collect-
ing the coincidences rj � kjð� ¼ 	 ¼ 0Þ to form

p̂ðrj; kjÞ ¼ 1
2 �̂ðkjÞRj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3;jð1� r3;jÞ

q
, where Rj ¼

P
xrx;j

is the total number of coincidences with the four orienta-
tions �, 	 ¼ 0, 
=2. The actual (’’true’’) value of nega-
tivity is then inferred as �x ¼ hp̂i sin2�, i.e., using the
knowledge of the rotation angle of the wave plate WP0
and the estimation of the mixing parameter.
Results.—In Fig. 2 we show the estimated value of

entanglement as a function of the actual one for the follow-
ing values of the WP0 rotation angle and mixing� ¼ 10
,
15
, 20
, 28
, 40
, 42
, 45
, hp̂i ¼ 0:85, 0.88, 0.88, 0.85,
0.92, 0.93, 0.97. The uncertainty bars on h�̂i denote the

quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð�̂Þ � hKip

, i.e., the square root of the sample
variance multiplied by the average number of total coinci-
dences hKi. This is in order to allow a direct comparison
with the Cramer-Rao bound in terms of the inverse of the
Fisher information (the gray area). Uncertainty bars on the

abscissae correspond to fluctuations ��t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðp̂Þp

sin2�
in the determination of �t, due to fluctuations in the esti-
mation of the mixing parameter. As it is apparent from the
plot, entanglement is estimated with precision at the quan-
tum limit for any value of the rotation angle �. Notice that
this conclusion is robust against the fact that the statistics is
not exactly Poissonian: in the left panel of Fig. 3 we show
the Fano factor for the four recorded coincidence counts kj
and the seven values of � employed in the experiment. We
have also performed full polarization tomography [31,32]
of the state evaluating negativity with the reconstructed
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FIG. 2 (color online). Estimation of entanglement at the quan-
tum limit. The plot shows the estimated value of entanglement
h�̂i as a function of the actual one �t. The uncertainty bars on h�̂i
denote the quantity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð�̂Þ � hKip

, i.e., the square root of the
sample variance multiplied by the average number of total
coincidences hKi. The gray area corresponds to values within

the inverse of the Fisher information �t 	H�1=2
�t . Uncertainty

bars on the abscissae correspond to fluctuations ��t ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðp̂Þp

sin2� in the determination of �t, due to fluctuations
in the estimation of the mixing parameter.
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matrix elements results, obtaining a more noisy determi-
nation of entanglement.

Besides full state reconstruction, our statistical model %�

may be checked for consistency on the basis of the re-
corded data themselves. Results indicate that other pos-
sible models to describe decoherence of our family of
states are ruled out as they cannot fit the experimental
sample. As for example, if one tries to describe the output
from our source by the family of (depolarized) Werner
states %0

� ¼ pjc �ihc �j þ 1
4 ð1� pÞ1 � 1, then one sees

from the expression of the coincidence probability
p0
tð�;�;	Þ ¼ Tr½%0

��tð�;	Þ� that unbiased estimators
for the mixing parameters and the negativity may be ex-
pressed as p̂0 ¼ Vð0; 0Þ, �̂0 ¼ � 1

2 þ 1
2Vð0; 0Þ þ

Vð�
=4; 
=4Þ. These may be written in terms of the
coincidence vectors k and r as p̂0ðrjÞ ¼ ðrr0;j � r1;j �
r2;j þ r3;jÞ=Rj and �̂0ðrj;kjÞ ¼ � 1

2 þ 1
2 p̂

0ðrjÞ þ ðk0;j �
k1;j � k2;j þ k3;jÞ=Kj. Upon evaluating the corresponding

sample means and variances one realizes that the model is
incompatible with the observed data. This is illustrated in
the right panel of Fig. 3 where we report the estimated
value of entanglement as a function of the actual one
assuming, for the description of the output signals, the
families %� (top plot) and %0

� (bottom plot). Here the
uncertainty bars denote the 3� confidence interval and
thus it is apparent that %0

� cannot fit the data.
Conclusions.—We have suggested and demonstrated a

measurement scheme based on quantum correlation mea-
surements to optimally estimate entanglement for a family
of two-photon entangled states. Our procedure is self-
consistent and allows estimating the amount of entangle-
ment with the ultimate precision imposed by quantum
mechanics. With a suited choice of correlation measure-
ments, our results may be extended to a generic class of
two-photon entangled states. The statistical reliability of

our method suggests a wider use in precise monitoring of
external parameters assisted by entanglement.
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FIG. 3 (color online). Left: Fano factors of the coincidence
counts kj, j ¼ 0, 1, 2, 3. Each group contains the Fano factor for

the seven values of � reported in the text. Right: estimated value
of entanglement as a function of the actual one assuming, for the
description of the output signals, the families %� (top plot) and
%0
� (bottom plot). The uncertainty bars correspond to the 3�

confidence interval.

PRL 104, 100501 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

12 MARCH 2010

100501-4


