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Multilayer networks have been the subject of intense research during the past few years, as they represent
better the interdependent nature of many real-world systems. Here, we address the question of describing the
three different structural phases in which a multiplex network might exist. We show that each phase can be
characterized by the presence of gaps in the spectrum of the supra-Laplacian of the multiplex network. We
therefore unveil the existence of different topological scales in the system, whose relation characterizes each
phase. Moreover, by capitalizing on the coarse-grained representation that is given in terms of quotient graphs,
we explain the mechanisms that produce those gaps as well as their dynamical consequences.
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I. INTRODUCTION

Multiplex networks are a particular setting of multilayer
systems that can be represented using different layers, each one
containing a network that accounts for a type of interaction.
The layers are coupled together, since each node might
participate in more than one layer or network [1]. As recently
shown, many real-world systems are better described in terms
of these multiplex networks rather than in the traditional
(single-layer) complex networks representation [2]. This is,
for instance, the case of online social networks (Facebook,
Twitter, etc.), in which some users participate in more than
one social network, or that of a biochemical system in which
different signaling channels work in parallel, or that of a
multimodal transportation system. Thus, multiplex networks
represent systems in which there are several topological levels,
which we call layers.

Single-layer complex networks [2] exhibit nontraditional
critical effects [3] due to their extreme compactness together
with their complex organization. A central theoretical question
in the study of multilayer networks in general and multiplex
networks in particular is whether critical phenomena will
behave differently on them with respect to traditional ones.
So far, theoretical studies have pointed out that this is indeed
the case [4–6]. Moreover, as recently shown [7,8], multiplex
networks might show different structural phases. Namely,
under some conditions, the multiplex system might behave
as one interconnected system, while in other conditions, the
layers can become effectively disconnected and behave as if
they were isolated [9]. In this work, we show that there are three
different topological scales that can be naturally identified in a
multiplex network: they are associated to (i) the individual
layers; (ii) the network of layers; and (iii) the aggregate
network. Additionally, we demonstrate that the connection
between these scales in terms of the spectral properties of the
parent multiplex network and its coarse-grained representa-
tions characterizes the aforementioned structural phases.

II. GENERAL DEFINITIONS

To start with, let us provide some definitions that will
allow us to formally represent a multiplex network. As in

the case of single-layer networks, we consider a set of nodes
V that represents the constituents of the system. In addition,
in order to distinguish different types of interactions, we have
to consider a set of layers L = {1,2, . . . ,m}, in which each
index α ∈ L represents a layer of interaction. Moreover, as a
given node might or might not be present in a given layer, we
define the ordered node-layer pair (u,α) to indicate that node
u participates in layer α. Formally, we consider the binary
relation GP = (V,L,P ), where P ⊆ V × L, i.e., P is the set
of node-layer pairs existing in the system, which is in general
a subset of all the possible node-layer pairs given V and L.
Thus, (u,α) ∈ P is the representative of node u in layer α.
Furthermore, there is a special case of multiplex network that
happens when each node u ∈ V has a representative in each
layer, i.e., when P = V × L. We refer to this multiplex as a
node-aligned multiplex [1]. Finally, we denote by n = |V | the
number of nodes, and by N = |P | the number of node-layer
pairs.

Given the previous definitions, we next represent, for each
layer, the connections between node-layer pairs by a graph in
the same way a graph represents a single-layer network. The
graph Gβ(Vβ,Eβ), where Vβ = {(u,α) ∈ P |α = β} represents
the interactions in layer β between the node-layer pairs that
are the representatives of the nodes in that layer. In other
words, there is a link between (u,β) and (v,β) in Gβ if and
only if node u and node v have an interaction of the type β.
Each graph of this type will be called a layer-graph. Thus,
it follows that we can define the union of all layer-graphs,
i.e., Gl = ⋃

α Gα and we call it the intralayer graph. The
intralayer graph Gl represents all the interactions between
the representatives of all nodes in all layers. In addition, we
have to consider the couplings between node-layer pairs that
represent the same node in different layers. To this end, we
introduce the coupling graph GC on P in which there is an
edge between two node-layer pairs (u,α) and (v,β) if and
only if u = v, that is, when the two node-layer pairs represent
the same node but in different layers. It is easy to realize
that the coupling graph GC is always a union of cliques
and of isolated nodes, in particular each clique is formed
by all the node-layer pairs representing the same node. In
the case of node-aligned multiplex networks, since each node
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FIG. 1. Schematic representation of a multiplex network. Panel
(a) shows an example of a multiplex network. The two other panels
depict its corresponding coarse-grained reductions: the network of
layers (b) and the aggregate network (c). Details of how these
reductions are obtained can be found in Ref. [12].

has a representative in each layer, the cliques are all of the
same size. Finally, a synthetic representation of the whole
multiplex network can be defined as GM = Gl ∪ GC , i.e., the
union of the intralayer graph and the coupling graph. This
graph is called a supragraph. A supragraph hence represents
a multiplex network in the same way that a graph represents a
traditional single-layer network. As usual, an adjacency matrix
or a Laplacian matrix can be associated to the supragraph GM.
In this paper we focus on the Laplacian and refer to it as the
supra-Laplacian [9].

If Lα is the Laplacian associated to a layer-graph Gα and
LC is the Laplacian associated to the coupling graph GC , the
supra-Laplacian associated to GM can be written as

L̄ =
⊕

α

Lα + LC, (1)

In order to make this work self-contained, we end this sec-
tion introducing two coarse-grained reductions of a multiplex
network that were previously defined in Ref. [12], namely the
aggregate network and the network of layers; see Fig. 1. Both
are based on the notion of quotient graphs, resulting in an
exact relation between their adjacency and Laplacian spectra
and those of the parent multiplex network. Roughly speaking,
in the aggregate network a link exists from node u to node v if
and only if they are connected in at least one layer and the link
is weighted by the number of links they have over the number
of layers in which u is a representative. As one can easily
realize, the aggregate network is in general directed as far as
the multiplex network is not node-aligned. In the network of
layers, there is a node for each layer and a link from layer α to
layer β is weighted by the number of nodes they share over the
number of node-layer pairs in α. In the case of node-aligned
multiplex networks, the network of layers is a complete graph
and all links have weight equal to one. In both coarse-grained
networks, nodes have self-loops weighted with the same rules.

Let L̃a and L̃l be the Laplacian of, respectively, the aggregate
network and of the network of layers. They are given by

L̃a = �−1
n ST

n L̄Sn, (2)

L̃l = �−1
l ST

l L̄Sl , (3)

where �n = diag(κ1, . . . ,κn) is the multiplexity degree matrix,
i.e., it has the number of layers in which a node has a repre-
sentative on the diagonal, Sn = (siu) is the node characteristic
matrix whose elements siu = 1 if and only if the node-layer
pair i is a representative of node u, �l = diag(n1, . . . ,nm) is
the layer size matrix, i.e., it has the number of node-layer
pairs of each layer on the diagonal, and Sl = (siα) is the
layer characteristic matrix whose elements siα = 1 only if the
node-layer pair i is in layer α.

III. CHARACTERIZATION OF MULTIPLE
TOPOLOGICAL SCALES IN MULTIPLEX NETWORKS

In this paper, we focus our attention on the spectra of the
supra-Laplacian and show how the interplay between different
topological scales affects the whole structural organization
of a multiplex network. The spectrum of the Laplacian is
a natural choice to address this problem, since it reveals
a number of structural properties. In particular, gaps in the
Laplacian spectrum (eigengaps) are known to unveil a number
of structural and dynamical properties of the network related
to the presence of different topological scales in it, from
communities at different topological scales to synchronization
patterns [10,11]. Thus, the emerging of an eigengap points
to structural changes that result in qualitatively different
dynamical patterns. For this reason, we introduce a weight
parameter p that allows us to tune the relative strength of
the coupling with respect to the intralayer connectivity. The
parameter p appears naturally as a physical parameter when
one considers, for instance, a diffusion dynamics [9] or a
spreading process [6], thus connecting topology and dynamics.

The supra-Laplacian with the weight parameter p reads as

L̄ =
⊕

α

Lα + pLC, (4)

where Lα is the Laplacian of the layer-graph Gα , while LC is
the Laplacian of the coupling graph.

Denote the eigenvalues of the Laplacian of the aggregate
network, L̃a , as 0 = μ̃

(a)
1 < μ̃

(a)
2 � · · · � μ̃(a)

n and that of the
network of layers, L̃l , as 0 = μ̃

(l)
1 < μ̃

(l)
2 � · · · � μ̃(l)

m . From
Ref. [12], we have that the eigenvalues of the coarse-grained
networks interlace those of the parent supra-Laplacian, that is,

μ̄i � μ̃
(a)
i � μ̄i+N−n,

(5)
μ̄i � μ̃

(l)
i � μ̄i+N−m.

In particular, when the multiplex network is node-aligned, the
spectrum of the Laplacian of the network of layers is a subset
of the spectrum of the parent supra-Laplacian.

Figure 2 shows the full spectrum of a toy node-aligned
multiplex network of four nodes and two layers—thus eight
nodes—layer pairs. We first note, as claimed in Refs. [9,13],
that the spectrum splits into two groups: one made up by
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FIG. 2. Eigenvalues of a toy two-layer multiplex with four nodes
per layer as a function of p. Continuous blue lines are the eigenvalues
of the multiplex network, whereas the dashed red lines are the
eigenvalues of the aggregate network.

eigenvalues that remain bounded while increasing p, and
another group of eigenvalues that diverge linearly with p.
The whole characterization of the structural changes in a
multiplex network basically depends on this splitting, i.e., on
the emerging of gaps in the spectrum.

The Laplacian spectrum of the network of layers is
composed of just two eigenvalues: 0 with multiplicity 1, and
mp with multiplicity (m − 1). Because of the inclusion relation
[12] between the coarse-grained and the parent spectra, mp

will be always an eigenvalue of the supra-Laplacian. It results
that, for low enough values of p, mp will be the smallest
nonzero eigenvalue of L̄. On the other hand, each eigenvalue
μ̄i of L̄, with i = 1 . . . n, will be bounded by the respective
Laplacian eigenvalue μ̃

(a)
i of the aggregate network because

of the interlace. It is evident that, by increasing p, at some
value p = p∗, it will happen that μ̄2 �= mp and that it will
approach its bound μ̃

(a)
2 . For continuity, at p∗, μ̄3 = mp must

hold, since mp is always an eigenvalue of the supra-Laplacian.
p = p∗ is the point at which the structural transition described
in Refs. [7,14] occurs, as already noted by Darabi Sahneh et al.
[15]. Each eigenvalue up to μ̄n will follow the same pattern,
following the line μ̄i = mp and departing from it to approach
its bound μ̃

(a)
i when it hits the next eigenvalue μ̄i+1 = mp (see

Fig. 2). The last eigenvalue crossing will be at the point p = p�
at which μ̄n = mp; after that point μ̄n+1 = mp must hold and
for continuity it will hold forever, since μ̄n+1 is not bounded.
To summarize, two structural transition points are defined:
one at the first eigenvalue crossing mp = μ̄3 and another one
at the last eigenvalue crossing mp = μ̄n.

Continuing with this reasoning, it follows that the supra-
Laplacian spectrum for p > p� can be divided into two groups:
one of n bounded eigenvalues that will approach the aggregated
Laplacian eigenvalues as p increases, and one of N − n =
n(m − 1) eigenvalues diverging with p. Therefore, the system
can be characterized by an eigengap emerging at p�. Moreover,
while the splitting of the eigenvalues in these two groups is
always present (because of the interlacing), the crossing of the
eigenvalues at p∗ and at p� (and between those points) only
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FIG. 3. Variation of the eigengap metric gn [Eq. (6)] with p. The
figure represents the eigengap between the last bounded and the first
unbounded eigenvalue for a node-aligned multiplex network made
up by two Erdos-Renyi networks of 200 nodes and an average degree
〈k〉 = 5. The vertical continuous line is the analytical value of p�,
while the dashed line is the bound provided by Eq. (12).

happens when the multiplex is node-aligned, this is because
the inclusion relation only holds in that case.

In order to quantify an eigengap, we introduce the following
metric:

gk = log(μ̄k+1) − log(μ̄k)

log(μ̄k+1)
, (6)

and we will focus on gn(p), i.e., the gap emerging between
the last bounded eigenvalue and the first unbounded at p�. By
construction,

gn(p�) = 0. (7)

For p > p�, log(μ̄n+1) will diverge while log(μ̄n) will remain
bounded by μ̃(a)

n , so gn will approach 1. For p < p�, in general,
both μ̄n+1 and μ̄n will be in the continuous part of the spectrum
in the large size limit, so gn will be 0 in this limit. That is, in
the large system size limit,

gn = 0, p � p�,
(8)

gn �= 0, p > p�.

This phenomenology is confirmed by numerical simula-
tions; see Fig. 3. It describes a structural transition occurring
at p�. In the case of a non-node-aligned multiplex network,
where p� is not defined since there is no crossing, gn(p) can
be used to define it operationally. The exact value of p� can
be derived following Ref. [15] to be

p� = 1
2λn(Q), (9)

being, for the case of two layers, Q = L+ − L−L+†L−, L± =
1
2 (L1 ± L2), and A† the Moore-Penrose pseudoinverse of A.

Interestingly enough, an upper bound for p� can be given
in terms of the structural properties of the layers. In fact, a
trivial bound, by definition, is given by

p� � μ̃(a)
n

m
. (10)
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The relation Eq. (10) just states that p� is defined as the value
of p at which the eigenvalue mp exceeds the last bounded
eigenvalues, the value of that bound being given by the largest
Laplacian eigenvalue of the aggregate network. We can bound
μ̃(a)

n in terms of the structural properties of the layers. If ω
(α)
i

is the degree of node u in layer α, its strength in the aggregate
network is ω̃i = 1

m

∑
α ω

(α)
i . Next let’s define ω̃ij = ω̃i + ω̃j ,

∀i ∼ j , where i ∼ j indicates a link between i and j in the
aggregate network. We have that [16]

μ̃(a)
n � maxi∼j {ω̃ij }, (11)

resulting in the following bound for p�:

p� � maxi∼j {ω̃ij }
m

= maxi∼j

{∑
α ωα

ij

}

m2
. (12)

IV. THE CASE OF IDENTICAL LAYERS

It is instructive to consider the special case of a multiplex
network made up of layers that are all identical. Let L be the
Laplacian matrix of all the layer-graphs. By definition, the
supra-Laplacian can be written as

L̄ = Im ⊗ L + pL(Km) ⊗ In, (13)

where L(Km) is the Laplacian of the complete graph on m

nodes.
Formally speaking, the multiplex network composed of

layers that are all identical is given by the Cartesian product
between the layer-graph and the network of layers. By
definition, its Laplacian spectrum is given by all the possible
sum between the eigenvalues of the Laplacian of the layer-
graph and the eigenvalues of the networks of layers, i.e.,

σ (L̄) = {μi(L) + μk(L(Km))|i = 1, . . . ,n k = 1, . . . ,m}.
(14)

At p = 0, all the eigenvalues are degenerated and the spectrum
is composed by the eigenvalues of L with a multiplicity equal
to the number of layers. For p > 0, we have a set of n constant
eigenvalues that are equal to the eigenvalues of L and a set
of N − n eigenvalues of the form μ̄i = μi(L) + mp. The two
transition points can be calculated in this case, since it is easy
to see that they are the points at which mp intersects μ2(L)
and μn(L), respectively, i.e.,

p∗ = μ2(L)

m
(15)

and

p� = μn(L)

m
. (16)

V. THE AGGREGATE-EQUIVALENT MULTIPLEX
NETWORK

To further characterize this transition, we would like to
compare a multiplex network M with the coarse-grained
networks associated to it. However, a direct comparison is not
possible, since those structures have different dimensionalities.
To overcome this problem, inspired by the case of identical
layers, we define an auxiliary structure whose structural
properties are completely defined by the aggregate network

and the network of layers, but that has the same dimensionality
of M. We call it the aggregate-equivalent multiplex (AEM).
The AEM of a parent multiplex network M is a multiplex
network with the same number of layers of M, each layer
being identical to the aggregate network of M. Additionally,
node-layer pairs representing the same nodes are connected
with a connection pattern identical to the network of layers.
Formally speaking, the AEM is given by the Cartesian product
between the aggregate network and the network of layers.
Thus, its adjacency matrix is given by

A = Im ⊗ Ã + pKm ⊗ In, (17)

where Ã is the adjacency matrix of the aggregate network, and
its Laplacian matrix is given by

L = Im ⊗ L̃a + pL̃l ⊗ In, (18)

where L̃a is the Laplacian matrix of the network of layers
and L̃l is the Laplacian of a complete graph of m nodes. Its
Laplacian spectrum is fully determined in terms of the spectra
of L̃a and of the spectra of L̃l . In particular, we have

σ (L) = {μ̃a + μ̃l|μ̃a ∈ σ (L̃a),μ̃l ∈ σ (L̃l)}. (19)

That is, each eigenvalue of L is the sum of an eigenvalue of
L̃a and an eigenvalue of L̃l . We also note that, since 0 is an
eigenvalue of both coarse-grained Laplacians, the spectrum of
both L̃a and L̃l are included in the spectrum of L.

To compare the parent multiplex network with its AEM, we
compute the quantum relative entropy between the former and
the latter. The quantum entropy (or von Neumann entropy) of
M is defined as

Sq(M) = T r(ρ log ρ), (20)

where ρ = L̄
2E+N(m−1)p , with E being the number of intralayer

links in M [17], i.e., ρ is the supra-Laplacian normalized by
the degree sum. Thus, the quantum relative entropy of the
multiplex network M with its associated AEM is defined as

Rq(M||AEM(M)) = T rρ(log ρ − log σ ), (21)

where σ is the supra-Laplacian of the AEM normalized by its
degree sum without considering self-loops. It is worth noticing
that the quantum relative entropy between a multiplex network
of identical layers and its AEM is 0 whatever the value of the
coupling p is.

In Fig. 4 we show the quantum relative entropy between the
parent multiplex and its AEM: it goes to 0 when p increases,
which means that the parent multiplex will be indistinguishable
from the AEM. Finally, it is informative to look at the quantum
entropy of M. Sq(M) shows a clear peak after p∗ and before
p� (see the inset of Fig. 4), i.e., in the region after the transition
observed in [7,14] and before the one we have introduced here.
In fact, by studying the sign of the derivative of Sq , it can be
proven that the quantum entropy must have a peak before p�.

VI. CONCLUSIONS

To gain intuition on the phenomenological implications
of our findings, it is enlightening to consider a diffusion
dynamics. First of all, considering a diffusion dynamics, we
can give a physical meaning to the coupling parameter p,
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FIG. 4. Variation of the entropic measures with p. The figure
shows the behavior of the relative entropy (×10), main panel, and
of the relative quantum entropy (inset) when p is increased. The
multiplex network is the same as described in the caption of Fig. 3
and the vertical line indicates the exact transition point p�.

i.e., assume that the diffusion constant for intra-layer diffusion
is Dintra while the diffusion constant for inter-layer diffusion
is Dinter, then p = Dinter

Dintra
and the diffusion equation, after a

rescaling of time, reads

ẋ = −L̄x = −
⊕

α

Lαx − pLCx.

as in Ref. [9]. In general, the physical meaning of the parameter
p depends on the actual system under study, however, it
always represents the relative strength of the coupling between
different node-layer pairs representing the same node in
different layers with respect to the strength of the coupling
of a node-layer pair with its neighbors in a given layer.

In diffusion dynamics, the large time scale is dominated
by the bounded group of eigenvalues for p � p�. These
eigenvalues are close to those of the aggregate network,
indicating that each layer shows practically the same behavior
of the latter network. This is because the fast time scale is
dominated by the diverging group of eigenvalues that are close
to those of the aggregate network plus those of the network
of layers. In summary, the network of layers determines how
each node-layer pair accommodates with its replica on a fast
time scale, being always “at equilibrium,” while the aggregate
network determines how and on what time scale the global

equilibrium is attained. From this point of view, the “world”
will look the same from each layer and it will look like in
the aggregate network. From the viewpoint of a random walk,
we can look at the average commute time c(i,j ), i.e., the
mean time needed by a walker starting in i to hit node j for
the first time and come back. This quantity can be expressed
in terms of the eigenvalue of L̄†, the pseudoinverse of the
supra-laplacian. Since the eigenvalues of L̄† are the reciprocal
of the eigenvalues of L̄, the aggregate network mean commute
time c̃(i,j ) is a good approximation of c(i,j ) after p� [18]:

‖c(i,j ) − c̃(i,j )‖ � E
n(m − 1)

2p
. (22)

In summary, in this paper, capitalizing on the coarse-grained
representations of a multiplex network via the aggregate
network and the network of layers introduced in Ref. [12],
we have unveiled the following structural phases as a function
of p: before p∗ the system is structurally dominated by the
network of layers, whereas after p� it is structurally dominated
by the aggregate network. Between these two points the system
is in an effective multiplex state, i.e., neither of the coarse-
grained structures dominate. In this region the VN-entropy—a
measure of structural complexity—shows a peak. We have
also shown that the novel structural transition at p� is rooted
in a gap that appears between the nth and the (n + 1)th = mp

eigenvalues of the supra-Laplacian, while the transition at p∗ is
rooted in a gap that disappears between the 2nd = mp and the
3rd eigenvalues of the supra-Laplacian. Finally, the definition
of the aggregate-equivalent multiplex allowed to compare the
multiplex with its associated coarse-grained representations
and to show that the relative entropy between the parent
multiplex and its AEM varies smoothly with p, which implies
that the two transitions are smooth from a global point of view.
Altogether, the present work provides a full understanding of
the spectrum of the supra-Laplacian of a multiplex network.
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