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Temporal stability of network partitions

Giovanni Petri1,* and Paul Expert2
1ISI Foundation, Via Alassio 11/c, 10126 Turin, Italy

2Centre for Neuroimaging Sciences, Institute of Psychiatry, De Crespigny Park, King’s College London, London SE5 8AF, United Kingdom
(Received 19 November 2013; revised manuscript received 17 July 2014; published 25 August 2014)

We present a method to find the best temporal partition at any time scale and rank the relevance of partitions
found at different time scales. This method is based on random walkers coevolving with the network and as such
constitutes a generalization of partition stability to the case of temporal networks. We show that, when applied
to a toy model and real data sets, temporal stability uncovers structures that are persistent over meaningful time
scales as well as important isolated events, making it an effective tool to study both abrupt changes and gradual
evolution of a network mesoscopic structures.
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I. INTRODUCTION

Identifying mesoscopic structures and their relation to the
function of a system in biological, social, and infrastructural
networks is one of the main challenges for complex network
analysis [1]. Until recently, most approaches focused on static
network representations, although most systems of interests
are inherently dynamical [2]. Recent theoretical progress and
the availability of data inspired a few innovative methods,
which mostly revolve around unfolded static representations
of a temporal dynamics [3,4], constraints on the community
structure of consecutive graph snapshots [5,6], or global
approaches [7–11].

In this article we take a different route and tackle the prob-
lem of finding and characterizing the relevance of community
structures at different time scales by directly incorporating
the time dependence in the method. Inspired by the notion
of stability [12], we propose a related measure, temporal
stability, which naturally embeds the time dependence and
order of interactions between the constituents of the system.
Temporal stability allows us not only to compare the goodness
of partitions over specific time scales, as its static counterpart,
but also to find the best partition at any time and over any time
scale. In the following we briefly review the main ingredients
of static stability and introduce their natural extensions to
temporal networks. We then present a benchmark model as
a proof of principle and then analyze two real-world data sets,
finding pertinent mesoscopic structures at different time scales.

II. TEMPORAL STABILITY

Like the map equation [13,14], stability exploits the prop-
erties of the stationary distribution random walkers exploring
a static network and of long persistent flows on a network.
While the map equation relies on finding the most compressed
description of a random walker trajectory in terms of its
asymptotic distribution, the intuition behind stability is that
walkers exploring the network will tend to stay longer in a
well defined cluster before escaping to explore the rest of
the network. The object of interest is thus the autocovariance
matrix of an unbiased random walk on a network G for a given
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partition H , i.e., the higher the autocorrelation, the better the
description of a system in terms of modules by H . After τ

Markov time steps of exploration of the network by the random
walkers, it can be compactly written as

Rτ = HT
(
�Mτ

G − πT π
)
H, (1)

where H is the partition matrix assigning nodes to commu-
nities, MG is the transition matrix of the random walk on G,
π is its stationary distribution, and � = diag(π ) [12]. The
πT π term can be interpreted as a null model that represents
the asymptotic modular structure against which the structure
unveiled by the random walkers’ exploration of the network is
tested. The stability of partition H at Markov time τ is then
defined by

rH = min
0�s<τ

Tr Rs. (2)

The magnitude of the trace of the autocovariance matrix
represents the extent to which walkers are confined within
the clusters defined by H . The minimum over the Markov
time during which the walkers were allowed to move ensures
that the measure is conservative. The value of τ at which a
given partition becomes optimal conveys information about
which topological scales of the network are best described by
the partition considered. Moreover, the interval over which a
partition is optimal is related to the importance of that specific
scale across the hierarchy of scales present in the network.
Extending this measure to temporal networks requires gener-
alizing its ingredients: the partition H , the transition matrix
MG, and the asymptotic walker distribution π .

Temporal partition. Let us define a discrete temporal
network G{t} as a time-ordered collection of graph snapshots
G{t} = {G0,G1, . . . ,GT } represented by their adjacency ma-
trices {A0,A1, . . . ,AT }. The static partition matrix is naturally
extended to the temporal case by allowing it to be time
dependent, H → H {t} = {H(t)|t = 0,1, . . . ,T }, with T the
number of slices in the temporal data set. At this point it is
worth noting that H {t}, like G{t}, does not need to change at
every time step.

Transition matrix. The transition matrix M will in general
change between time steps and therefore one does not
simply iterate it. We define Mt , the single-snapshot transition
matrix relative to Gt , as Mt = limε→0(Dt)−1(ε1 + At ), with
Dt = (ε1 + At ) · 1, where 1 is the constant vector with unit
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components. The ε limit is equivalent to including a self-loop
of vanishing weight and is required to ensure that the transition
matrix is well defined for nodes that are disconnected at time t .1

Using the matrices Mt , we can define a time-ordered product
MG(t,τ ) that represents the transition matrix for the evolution
of the random walker across the changing network between
t and t + τ :

MG(t,τ ) = T {Mt , . . . ,Mt+τ } =
t+τ∏
s=t

Ms = Mt+τ · · · Mt ,

(3)

where we impose right multiplication to respect the arrow of
time.

Stationary walker distribution. The last element we need is
the stationary walker distribution on a time-varying network.
We will denote this distribution by ω. Different types of
random walks can be devised, depending on the model for
the dynamics of the network; therefore ω is not unique:
Different dynamics preserve different statistical features of
the system. Here we consider the case where the time-evolving
connectivity of each node is known. The activity-driven model,
introduced by Perra et al. [15], is particularly adapted to
such systems. It provides a null model akin to a temporal
configuration model where the nodes temporal activities play
the role of the node degrees. We only introduce here the main
concepts needed for our purpose, but a full description of the
model is given in Appendix A. Importantly, the stationary
distribution for walkers coevolving with the network [16] is
analytically amenable and provides a natural null model for
temporal stability. The stationary walker distribution for a node
with activity a is given by

ωa = amw + φ

a + m〈a〉 , (4)

where w is the average density of walkers on a node, φ is
a scalar that can be obtained numerically in closed form,
and 〈a〉 is the average activity. We use m = 2 and the
activities are computed such that the temporally averaged
degree is conserved [15]. Without loss of generality, we can set
w = 1/N , N being the number of nodes in the network, and
use Eq. (4) for the stationary walker distribution.

We are now in a position where we can define the temporal
stability for a partition H {t} of G{t} at time scale τ :

rτ,H {t} = 〈Tr Rt ′,τ [G{t},H {t}]〉t ′, (5)

with

Rt ′,τ [G{t},H {t}] = HT (t ′)[�MG(t ′,τ ) − ωT ω]H(t ′), (6)

where � = diag(ω) and the average over t ′ in Eq. (5) is
taken over [0,T ] and plays a role similar to the minimum
over τ in the static stability. The trace is taken inside the
temporal average to allow for partitions of different sizes at

1While this is not necessary in the case of static stability, because
disconnected components can be analyzed separately, it is extremely
important for random walkers moving on an evolving network, where
such components can drastically change from one slice to the next.

different times. Temporal stability is naturally interpreted as
the average stability obtained over all windows of size τ for a
given temporal partition H {t}.

In addition to providing a natural measure to evaluate the
relevance of partitions over different time scales τ , temporal
stability characterizes the partition H opt[t,τ ] with the highest
stability for every pair (t,τ ). By linearity, the average over t

can be unfolded, leaving the expression

B(t,τ ) = [�MG(t,τ ) − ωT ω]. (7)

The partition H opt[t,τ ] optimizing (7) is the same as the one
optimizing temporal stability at time t over the time scale
τ and can be found by considering Eq. (7) as a modularity
optimization problem [17] and solving it with any standard
modularity algorithm (e.g., the Louvain method [18]). In
Appendix B we give a detailed description of the workflow
and provide a link to our code.

III. TWO-BLOCK TOY MODEL

A simple example is useful to illustrate the working of tem-
poral stability and the type of structure it can unveil. Following
the model with activity-correlated link classes defined in [19],
we consider a toy model network consisting of two blocks
of N and N ′ nodes that follow a simple cycle of temporal
interactions repeated M times. Each cycle consists of two
interaction windows with a total time period of T = Tin + Tout

(see Fig. 1 for an illustration). During the first Tin time steps, the
nodes only interact within their block with a probability pin per
time step; in the remaining Tout time steps, the nodes interact
exclusively with nodes from the other block with probability
pout. Setting pout = Tinpin

Tout

N(N−1)+N ′(N ′−1)
2NN ′ guarantees that the

density of links within and between blocks is the same. This
makes it impossible to distinguish the two communities at the
time-aggregated level.

We then compare the stability of various partitions obtained
by aggregating the temporal network over time windows of

FIG. 1. (Color online) Two-block model. Two blocks of nodes
interact following simple alternating rules: During a time window of
Tin time steps [long (blue) intervals], nodes can create connections
only to nodes within their block (top) with probability pin; then during
a time window Tout [short (red) intervals], they are allowed to interact
only with nodes belonging to the other block (bottom) with probability
pout. The linking probability for connections within pin and between
blocks pout are chosen such as to make the time-aggregated network
a single uniform hairball, hiding the temporal nature of the division
in two blocks.

022813-2



TEMPORAL STABILITY OF NETWORK PARTITIONS PHYSICAL REVIEW E 90, 022813 (2014)

FIG. 2. (Color online) Comparison of the number of communi-
ties in optimal partitions for different values of τ in the International
Trade Network.

different size 	 = 10,20,80 time steps and the bipartition
into the two blocks [Fig. 3(a)]. These partitions represent
progressively coarser temporal summaries of the network and
we refer to them as 	 partitions. They show how aggregating
temporal networks wipes out relevant dynamics. With the
simulation setup we used, a crucial value for time is t = 20
as it represents the interval of time over which the two blocks
are well defined. This is clearly shown by the value of rτ

for the bipartition, which steadily decreases towards zero for
τ � Tin. This illustrates well how temporal stability behaves:
The bipartition is a reasonably good approximation over time
scales shorter than the mixing cycle, while for longer time
scales, the bipartition description is lost in the noise. The
parameter τ can then be used to select a time scale over
which to compare the relevance of partitions. A partition
that is relevant over a short time scale captures essential
microdynamics, while at longer time scales other global
mechanisms prevail and the microdynamics can be considered
as noise. To illustrate this phenomenon we plot in in Fig. 2 the
simplest quantity, the number of communities in a partition,
for different values of τ in the trade network data set (which
we fully introduce in the next section). The shortest time scale
τ = 1 yr clearly identifies the World Wars and other events
that are precisely located in time. As soon as one switches
to a time scale longer than those events, e.g., τ = 10 yr,
these effects disappear and the number of communities
displays a much smoother behavior over time and captures
a different type of dynamics, namely, the densification of links
in the network. This effect is even stronger if one considers
longer time scales τ = 20,30 yr.

Thus, in our toy model, 	 partitions with 	 < T perform
well for small τ < Tin, as the aggregation window allows for
a finer temporal sampling of the network’s evolution. Their
stability values then continuously decay for growing τ � Tin

and eventually tend to 0. Moreover, the 	 partitions with
	 > T perform better for τ � Tin as the mixing windows
are incorporated in the aggregated networks. Figure 3(a)
also display the temporal stability for the optimal partition,
found with Eq. (7), which outscores all other partitions for
all τ .

The variation of information v(t,τ,τ ′) between H opt[t,τ ]
and H opt[t,τ ′] is a useful tool to detect structural changes
between clusterings [1,20]. Consider two partitions of a
network X and Y in k and l communities, respectively.

FIG. 3. (Color online) Comparison of the two-block model and
SocioPatterns data: temporal stability curves rτ for the (a) two-block
model and (b) SocioPatterns for a selection of 	 partitions against
the best temporal clustering obtained from Eq. (7). Temporal stability
identifies the periodic nature of the two data sets with the recurring
sawtooth pattern evident in the variation from the information v(t,0,τ )
in (c) the two-block model and (d) SocioPatterns. The variation of
information is computed from the optimal partitions. The parameters
for the two-block model are N = N ′ = 10, Tin = 20, pin = 0.01,
Tout = 1, and pout = 0.18.

Associate with each community in the partition a probability
proportional to its cardinality, for example, with Xi ∈ X
associate pX

i = |Xi |/N , where N is the number of nodes in
the network under consideration. Finally, v(t,τ,τ ′) is defined
as

v(t,τ,τ ′) = H (H opt[t,τ ]) + H (H opt[t,τ ′])

− 2I (H opt[t,τ ],H opt[t,τ ′], (8)

where H is the Shannon entropy and I is the mutual
information defined on the probabilities introduced above.

Two special cases are particularly enlightening regarding
the evolution of the optimal partition in time: v(t,0,τ ), which
informs about the time scale over which structures persist from
a time t [see Figs. 3(c) and 4(b)], and v(t,τ,τ + 1), which gives
the instantaneous structural changes between two consecutive
time steps t + τ and t + τ + 1 [see Fig. 4(c)], starting at time
t . In the first case, key information about stability is given on
the ordinate axis and in the second case, sudden changes can be
read on the abscissa axis. In the two-block model, information
about the state at time t is almost completely lost after two
cycles, although this depends on when the initial time t is in
the cycle: At the beginning of a cycle a walker is constrained
within a block and thus the community structure is stable for a
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FIG. 4. (Color online) Financial trade network. (a) Temporal
stability curves rτ for different 	 partitions. The optimal temporal
clustering is found from an instantaneous temporal slice by temporal
stability. Temporal stability confirms (b) the absence of periodicity
[variation of information v(t,0,τ )] and (c) regular reorganizations
of the community structure of the trade network [variation of
information v(t,τ,τ + 1)]. Temporal stability ingeniously identifies
abrupt changes in the community structure that correspond to major
historical events of the 20th century. The date of said events can be
easily read on the abscissa of (b) and (c). The variation of information
is computed from the optimal partitions.

longer time; the interblock interaction then comes as a shock
for the community structure, producing the sawlike pattern
evident in Fig. 3(c). Since the toy model has no additional
structure on top of the periodicity, we expect v(t,τ,τ + 1) to
show only noise due to fluctuations in the connectivity within
blocks.

IV. REAL DATA SETS

Face-to-face interaction network.. The first real network
we analyze is the temporal face-to-face network of children in
a primary school described in [21]. The connectivity dynamics
of this data set resembles that of the toy model, because
children’s interactions mostly take place within their class
and are punctuated by interclass interactions during breaks
and lunch. We repeated the analysis above for one day of
contacts and were able to uncover the structures described
in [21]. We find that, for short time scales τ , the stability
curve obtained for 	 partition with 	 = 1h has a stability
score markedly higher than those of partitions obtained over
smaller window sizes [Fig. 3(b)], which potentially contain
more information in this τ interval. This reflects the fact that the
organization of the children’s schedule is organized in hourly
periods with short breaks in between. Hence, the dynamics
below that time scale does not provide extra information.
Like in the toy model, the variation of information v(t,0,τ )
for the optimal partition [Fig. 3(d)] shows that the original
information is almost completely lost after 2 h. Since during
lunch break children are gathered together and can interact

freely across classes, we expect the lunch break to produce
a discontinuity. While the temporal stability of the optimal
partition is the highest at all delays τ as expected [Fig. 3(b)],
v(t,τ,τ + 1) shows nontrivial patterns that were absent in the
toy model example. This indicates that, although the global
structure of the children’s communities changes slowly in time,
it can fluctuate from instant to instant considerably more in
comparison to the toy model case, highlighting the presence
of the social structures beyond that of the classrooms.

International trade network.. The second real network
we consider is the financial trade network over the period
1870–2009 [22,23]. The original data set is weighted and
directed. In order to make it consistent with our binary and
symmetric null model, we needed to choose a local threshold
and forfeit directionality (see Ref. [24] for details). Despite
the loss of information due to these simplifications, temporal
stability still captures a rich economical phenomenology. As
it is conceptually very different from the SocioPatterns data
set, we expect to unveil a different type of temporal structure.
Indeed, while no periodicity is present, we clearly identify
abrupt changes in the community structure between periods
of structural stability [Figs. 4(b) and 4(c)]. These structural
changes correspond to landmarks of the 20th century’s history
that had repercussions on the trade network’s community
structure: For example, two uniform regions are present in
Fig. 4(b) between the Great War and the late 1920s and from the
late 1920s to the beginning of World War II. Temporal stability
therefore identifies the beginning of the Great Depression in
1929. Note also how the regions of uniformity in Figs. 4(b)
and 4(c) appear to become shorter proceeding to more recent
times and essentially disappear after 1970. It is particularly
enlightening to look at Fig. 4(b), which confirms the presence
of spells of relative structural calm, interrupted by sudden
changes. Zooming in the past 40 years, we also see more
frequent localized signatures, which appear to be in connection
with notable crisis, including the oil crisis in the 1970s, the
speculative bubble of the 1980s, the Gulf War, the fall of the
Communist Block, the banking crises of the early 1990s, and
finally the 2008 financial crisis.

V. DISCUSSION

To summarize, we introduced temporal stability, a measure
related to the modular structure of temporal networks. There
are two aspects to temporal stability: First, it enables us to
compare the relevance of different time-varying partitions at
different time scales and second, it can be used to find the
optimal partition over a time scale τ starting at any time t .
The main difference between this method and previous ones
lies in the conceptually different treatment of the temporal
aspect of the problem. Time is naturally embedded in temporal
stability as it is based on random walks coevolving with
the network. This is in stark contrast with other methods
where time is effectively treated as an additional topological
constraint and only probed at one time scale. The outcomes of
different methods are therefore different and complementary
(see Ref. [24] for a comprehensive comparison with multislice
modularity). We illustrated the working of temporal stability
on different benchmark data sets, showing that it is capable
of discerning characteristic time scales of the dynamics

022813-4



TEMPORAL STABILITY OF NETWORK PARTITIONS PHYSICAL REVIEW E 90, 022813 (2014)

underlying the data sets as well as highlighting single shocks
in the systems. As for any target function that includes a
comparison between a structure and a notion of randomness,
the choice of the null model is crucial. In this article our choice
fell on the activity-driven model for two reasons: It constitutes
the simplest nontrivial null model and it yields an analytical
expression for stationary distribution of random walkers on
an evolving network. This in turn allows us to have a closed-
form expression for the temporal stability. The equations for
temporal stability (5) and (6) can be modified with different
null models accounting for different constraints, such as
specific temporal behaviors (e.g., temporal correlations), using
stationary distributions obtained from simulated ensembles of
paths respecting temporal correlations [25], realistic interevent
times distributions [26–28], or temporal null models allowing
for weighted links. The investigation of the different possible
null models is left for future work and is subject to data
availability.
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APPENDIX A: ACTIVITY-DRIVEN
MODEL DESCRIPTION

The activity-driven network model is a data-driven gener-
ator for random temporal networks [15]. In particular, it uses
a node’s measured activity potential to represent its likeliness
to create new links and thus forming its dynamics. Given a
network of N nodes, assign to each node i an activity rate ai ,
which is the probability per unit time that node i will create a
new link to another node. Usually, the activity is given in the
form ai = ηxi , where xi is the activity potential. This is done
because it allows us to control the average number of active
nodes in the network through η. The generation of the network
snapshots proceeds as follows.

(i) At time t , start with a network Gt with N disconnected
nodes.

(ii) With probability ai node i creates m links to nodes
randomly selected with uniform probability.

(iii) At the following step, remove all edges and iterate.
The simplicity of the model allows us to calculate analyt-

ically a number of properties of the resulting network. For

example, given a distribution F (x) for the activity potential,
the average degree at a given time is given by 〈k〉t =
2Et

N
= 2mη〈x〉 and the degree distribution of the integrated

network after T steps for small time and network size is
PT (k) ∼ F [ k

T mη
]. More interestingly for our purposes, the

activity-driven model allows us to describe the asymptotic
distribution of a random walker coevolving with the network
[16]. It is in fact possible to write the probability of a random
walker to be in node i at time t as

Pi(t + 	t) = Pi(t)

⎡
⎣1 −

∑
j �=i

�	t
i→j

⎤
⎦ +

∑
j �=i

Pj (t)�	t
j→i ,

(A1)

where �	t
i→j is the propagator from i to j over time 	t . In

the 	t → 0 limit the propagator can be written as �	t
i→j ∼

	t
N

(ai + maj ) and by grouping nodes in activity classes we
can write the equation for the probability Wa(t) of finding the
walker in a node of activity a at time t as

∂Wa(t)

∂t
= −aWa(t) + amw − m〈a〉Wa(t)

+
∫

a′Wa′F (a′)da′, (A2)

where w = W/N is the density of walkers in the network.
Looking for the stationary state of Eq. (A2), one obtains
Eq. (4).

APPENDIX B: METHOD WORKFLOW

In this appendix we describe the workflow to follow
to obtain the temporal partition with the optimal temporal
stability (see Ref. [29]).

(i) Extract the adjacency time series {A0,A1, . . . ,AT } of the
system.

(ii) Calculate the activity a for each node.
(iii) Calculate ωa for each class of activity.
(iv) Go through each possible pair [t,τ ] and compute the

transition matrix MG(t,τ ).
(v) Compute the modularity matrix B(t,τ ) =

[�MG(t,τ ) − ωT ω].
(vi) Find the partition HT (t) that optimizes

HT (t)B(t,τ )H(t) using any modularity optimisation algorithm
(for example, the Louvain method [18]).

(vii) Finally, average over t to find the temporal stability
rτ,H {t} = 〈Tr Rt ′,τ [G{t},H {t}]〉t ′ .
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