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Abstract—Story identification from online user-generated con-
tent has recently raised increasing attention. Existing approaches
fall into two categories. Approaches in the first category extract
stories as cohesive substructures in a graph representing the
strength of association between terms. The latter category in-
cludes approaches that analyze the temporal evolution of indi-
vidual terms and identify stories by grouping terms with similar
anomalous temporal behavior. Both categories have limitations.

In this work we advance the literature on story identification
by devising a novel method that profitably combines the peculiar-
ities of the two main existing approaches, thus also addressing
their weaknesses. Experiments on a dataset extracted from a real-
world web-search log demonstrate the superiority of the proposed
method over the state of the art.

I. INTRODUCTION

The problem of automatically identifying stories or events1

from online user-generated content has recently attracted a

great deal of attention [1, 2, 7, 14, 16, 19, 21, 23]. Generally

speaking, the goal is to take data from online sources, such

as queries issued to a web search engine or posts from micro-

blogging or social-networking platforms, and automatically

extract sets of terms or entities that provide a good description

of relevant events happening in the real world. Approaches to

story identification can be classified into two categories.

Approaches in the first category identify stories by building a

graph representing the strength of association between terms

(or entities), and then looking for sets of terms (subgraphs)

that are cohesively connected in the graph according to a

certain notion of cohesiveness [2, 7, 16, 21, 23]. The degree of

association between any two terms, i.e., the weight assigned

to each edge in the co-association graph, is established by

counting how many times those terms co-occur in the specific

dataset considered (e.g., how many web-search queries, tweets,

or posts contain both terms), or by means of correlation

measures (e.g., log-likelihood ratio, correlation coefficient)

computed on top of the raw co-occurrence counting. Be-

cause the strength of association between terms changes over

time, the co-association graph actually corresponds to a time-

evolving graph, composed of various (deterministic) snapshot

graphs. Each snapshot models the co-associations observed at

a specific time instant. As an example, if a daily granularity

is adopted, each snapshot may represent the number of times

any two terms co-occur in a query, tweet, or post generated

1We use “story” and “event” interchangeably through the paper.

in that day. A major limitation of these approaches is that

cohesive subgraphs corresponding to stories are extracted on

the snapshot graph observed at the current time instant, that is

without considering how the associations between terms have

evolved over time or deviated from normality.

The second category of story-identification approaches in-

cludes methods that focus on the temporal evolution of the

occurrences of individual terms [19, 20]. Such methods assign

each term a time series, describing how anomalous (according

to a specific anomaly-detection model) its level of occurrence

at any time instant is, when compared to the normal level of

the whole time horizon. These approaches do not exploit any

co-association graph, Stories are rather identified by analyzing

each term individually, and a-posteriori grouping terms based

on the similarity of the corresponding anomaly time series.

Associations between terms constitute a paramount source of

information, which provides valuable insights for assessing to

which extent the terms in a story are correlated to each other.

In this work we propose a novel method for identifying stories

from user-generated content, which overcomes the limitations

of the two main aforementioned approaches by taking both

term co-associations and their (anomalous) temporal evolution

into account. The proposed method consists of two steps: (i)
applying an anomaly model to quantify how abnormal the

association between two terms is at any time, with respect

to its history, and (ii) leveraging the graph structure induced

by such anomalous associations to identify cohesive subsets of

terms that are strongly and anomalously associated with each

other in a given time window. Our method identifies what we

call buzzing stories, i.e., stories described by sets of terms

that are strongly associated to each other and, at the same

time, raise an exceptionally-high level of attention in the time

window considered, compared to what normally observed. The

main contributions of this work are as follows.

• We advance the state of the art on story identification by

devising a novel method that addresses the limitations of

the main existing approaches (Section II).

• The first step of our method assigns, for any time instant,

an anomaly score to each pair of terms, so as to reflect

the anomaly of the association between those terms at

that specific time. To this end, we devise an anomaly-

detection model for temporal data that trades off between

simplicity, efficiency, and effectiveness (Section II-A).
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• The second step extracts cohesive subgraphs from the

graph induced by the anomalous term co-associations

derived in the first step. We define a notion of temporal

density to be maximized and the corresponding combi-

natorial optimization problem. We show that the problem

is NP-hard, and we devise an efficient and effective

heuristic to solve it (Section II-B).

• We perform an extensive evaluation on a real dataset

extracted from the query log of a popular search engine.

Results confirm that the proposed method outperforms

the two main existing story-identification methods in

detecting stories that both raise an anomalous level of

attention and match real-world events (Section III).

II. ANOMALOUS TEMPORAL SUBGRAPH DISCOVERY

Given a set of objects O, a discrete time horizon T , and

a function f : O ×O × T → R
+ that, for every time instant

in T , assigns a positive real value to every (unordered) pair

of objects in O. O keeps track of all objects used to describe

stories. Objects may correspond to terms or entities extracted

from a source of user-generated content, such as posts from

micro-blogging or social-networking platforms, or web search

logs [1, 21, 23]. T represents the overall time horizon where

the objects in O are assumed to “interact” with each other.

Specifically, T corresponds to a finite set of time instants,

where every time instant t ∈ T identifies a basic unit of time

within the overall time frame, e.g., an hour, a day, or a week.

Function f quantifies the strength of association between two

objects in O at any time instant in T . As an example, for any

two objects o1, o2 ∈ O and a time instant t ∈ T , f(o1, o2, t)
can be defined as the number of times o1 and o2 co-occur

in the data snapshot captured at time t, as well as the log-

likelihood ratio or correlation coefficient computed on top of

the raw co-occurrence counting [2, 16].

We can alternatively think of the input above as a time-

evolving (or temporal) undirected weighted graph G =
(V, {Et, ft}t∈T ), i.e., a graph with fixed vertex set V = O,

and edge set that varies over time. In particular, every time

instant t ∈ T is assigned an edge set Et = {{u, v} ∈
2V | f(u, v, t) ≥ η}, and a function ft : Et → R+ assigning

weights to edges in Et in such a way that ft(u, v) = f(u, v, t).
η is a threshold denoting when the strength of association

between two objects can safely be assumed to be null, or,

equivalently, when the edge between those objects at the

corresponding time instant t can be discarded. η is set de-

pending on the application context. Given a temporal graph

G = (V, {Et, ft}t∈T ) and a time instant t ∈ T , we denote by

deg(u, t) the (weighted) degree of vertex u at time instant

t, i.e., deg(u, t) =
∑

(u,v)∈Et
ft(u, v). Similarly, given a

subgraph of G induced by a subset of vertices S ⊆ V ,

we denote by degS(u, t) the degree of vertex u at time t
in that subgraph, i.e., degS(u, t) =

∑
(u,v)∈Et,v∈S ft(u, v).

For the sake of simplicity, we slightly abuse of notation and

hereinafter denote by S both a subset of vertices of G and the

corresponding subgraph induced by S.

In this work we study the problem of identifying buzzing
stories from user-generated content. We assume the input data

to be represented by means of a temporal graph G, as described

above. Given a temporal graph G and a time window W ⊆ T ,

our aim is to extract K stories or subsets of objects that exhibit

an anomalous behavior in the window W . Here “anomalous”

means that the strength of association between the objects

forming a story diverges substantially, in every time instant

belonging to the window W , from the typical level observed

throughout the whole horizon T . To accomplish our goal

we devise a two-step approach. The former step consists in

deriving an anomalous temporal graph GA from the input

graph G. GA is a graph whose structure corresponds to the

structure of G, i.e., vertex and edge set remain the same. What

changes is the scoring functions assigning weights to edges.

The original functions {ft}t∈T , which weigh edges in G
based on the raw association scores between the corresponding

objects, are replaced with functions {φt}t∈T that assign edge

weights in GA in terms of anomaly scores: each score φt(u, v)
indicates how anomalous the association between objects u
and v is at time instant t with respect to the typical association

observed during the entire time period T . The second step

takes the anomalous temporal graph GA and a time window

W ⊆ T as input, and extracts subsets of objects that are

strongly associated to each other in W . This is achieved by

looking for subgraphs of GA that are cohesive enough accord-

ing to a notion of cohesiveness, which is defined based on

the anomaly scores and the given time window. Sections II-A

and II-B respectively describe the method to compute the

anomaly scoring functions {φt}t∈T , and the extraction of

cohesive anomalous subgraphs representing buzzing stories,

while Section II-C summarizes the overall proposed approach.

A. Step 1: Computing anomaly scores

The first step of our approach corresponds to a task of

anomaly detection in temporal data: assign a score to every

data point of a temporal sequence according to a model that

quantifies its level of anomaly with respect to the remaining

points [9]. In our context we have a temporal sequence for

each edge in the input graph G, and the data points in each

sequence correspond to the (raw) weights assigned to the

corresponding edge over all time instants. This is a model

that trades off between simplicity, efficiency, and effectiveness,

and gives high-quality results in practice, as testified by our

evaluation in Section III. Our approach is however parametric

to the anomaly-detection model: other models can be used.

We rely on an unsupervised approach that first assigns to

each edge e at time t a score designed to reflect the relative

importance of its weight fti(e) with respect to all other edges

at time t. Such an importance is measured as the (mass behind

the) percentile that the weight of e occupies within the global

weight volume at time t. The rationale of using percentiles

instead of actual values is to have a fair measure of the

relative importance of a weight value with respect to all other

weights of the same snapshot. To establish how anomalous

the importance of e at time t is, with respect to the past
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Algorithm 1 AnomalyScores
Input: A temporal graph G = (V, {Et, ft}t∈T ), an integer r
Output: An anomalous temporal graph GA = (V, {Et, φt}t∈T )

1: for all ti ∈ T do
2: TOT (ti)←

∑
e∈Eti

fti(e)

3: for all e ∈ Eti , let f ′ti(e) := fti(e)/TOT (ti)
4: sort edges e ∈ Eti by ascending f ′ti(e)
5: for all e ∈ Eti following the order given by f ′ti(e) do
6: pti(e)←

∑
e′∈Eti

|f ′ti (e
′)≤f ′ti (e)

f ′ti(e
′)

7: φti(e)← 0
8: if i− r > 0 ∧ pti(e) > pti−r (e) then
9: φti(e)← pti(e)− pti−r (e)

history of e, our model next compares its percentile weight

at time ti with the corresponding percentile at a reference
past instant ti−r. As an example, if the input horizon T has

a daily granularity, the reference r could be one week/month

before. The final anomaly score assigned to e at time ti is the

difference between the two percentiles.

The pseudocode of our anomaly-detection model is reported

as Algorithm 1. The time complexity of Algorithm 1 is

O(|T |m log n), where n = |V | and m = maxt∈T |Et|.

B. Step 2: Extracting anomalous temporal subgraphs

The second step of our approach to discovering buzzing

stories follows the general idea that every piece of data (e.g.,

a post in a social-networking platform or a query issued to

a search engine) related to a specific story typically tends to

involve the same set of main objects (e.g., terms or entities).

We take the anomalous temporal graph GA defined in the

previous step, as well as a time window W ⊆ T that denotes

the time period under consideration, and we seek K subgraphs

of GA that exhibit high density in the window W . To recognize

a story as buzzing, it needs to have high cohesiveness among

all objects therein and for all time instants in the window W .

Hence, given a subgraph S of GA and a time window W ⊆ T ,

in this work the following definition of cohesiveness it is used:

δ(S,W ) = min
u∈S

min
t∈W

degS(u, t). (1)

The overall cohesiveness of a set of subgraphs S of GA

is measured by taking the sum of the cohesiveness of each

subgraph in S:

Δ(S,W ) =
∑

S∈S
δ(S,W ). (2)

The double-min function in Equation (1) allows for capturing

the requirements: high cohesiveness among all objects and for

all time instants. The minimum over vertices helps mitigate the

so-called free-rider effect (vertices attached to a strong group

by weak links [5, 18]), thus preventing stories from containing

undesired outlying objects. At the same time, minimizing over

all time instants in W captures the fact that a buzzing story

should exhibit high strength of association during the entire

period spanned by W . According to [1] a story with too

many objects is hard to be processed by a human being. Then,

we require that each story/subgraph be limited in size. Each

output subgraph S is required to have size no more than an

input integer N , with N in the order of a few tens.

Problem statement. Motivated by the above discussion, we

now state the problem we aim to solve.

Problem 1. (ANOMALOUS TEMPORAL SUBGRAPH DIS-
COVERY (ATSD)) Given an anomalous temporal graph GA =
(V, {Et, φt}t∈T ), a time window W ⊆ T , and two integers
K,N ≥ 1, find a set S∗ = {S1, . . . SK} of disjoint subgraphs
of GA such that (i) ∀i ∈ [1..K] : |Si| ≤ N , and (ii) Δ(S∗,W )
is maximized. �
Theorem 1. The ATSD problem is NP-hard.

Proof. We prove NP-hardness by reducing from the well-

known CLIQUE (decision) problem: given a graph G = (V,E)
and an integer k, decide if G contains a clique of size k.

We reduce CLIQUE to a special case of ATSD where |T | =
1, K = 1, and ∀t ∈ T , e ∈ Et : φt(e) = 1. This special

case of ATSD corresponds to having a simple unweighted input

graph (i.e., instead of a temporal graph) and asking for one

output subgraph. The corresponding decision version is: given

a (simple, unweighted) graph G′ = (V,E) and two integers

N,M , decide if a subgraph with size no more than N and

min degree at least M exists in G.

Given an instance I = 〈G, k〉 of CLIQUE, we construct in

polynomial time an instance I ′ = 〈G′, N,M〉 of (the special

version of) ATSD by setting G′ = G, N = k, M = k − 1.

We show that I is a YES-instance for CLIQUE if and only if

I ′ is a YES-instance for ATSD. Indeed, if G contains a clique

of size k, this corresponds to a subgraph with k = N vertices

and minimum degree k−1 = M . Therefore, this would make

the corresponding ATSD instance I ′ be a YES-instance as well.

On the other hand, if G′ contains a subgraph of size N = k
and minimum degree M = k− 1, it means that this subgraph

is a clique of size k. �

The DenseTemporal algorithm. As Problem 1 is NP-hard,

we devise a fast heuristic that yields accurate solutions in

practice, as confirmed by our experiments in Section III.

The proposed heuristic is inspired by the fact that a simpli-

fied version of our ATSD problem can be solved in polynomial

time. Particularly, we consider a simplified ATSD that requires

only one output subgraph (K = 1) and leaves the size of the

output subgraph unbounded (N = ∞). We call this problem

UNBOUNDED-ATSD (U-ATSD ).

Problem 2.(UNBOUNDED ANOMALOUS TEMPORAL SUBGRAPH

DISCOVERY (U-ATSD )) Given an anomalous temporal graph
GA = (V, {Et, φt}t∈T ) and a time window W ⊆ T , find a
subgraph S∗ of GA that maximizes δ(S∗,W ). �

This simplified ATSD resembles the problem of finding

the inner-most core in a graph (and the notion of core
decomposition) [17], which, we briefly recall below.

The k-core (or core of order k) of a graph G is defined as

the maximal subgraph in which every vertex is connected to at

least k other vertices within that subgraph. The set of all cores,
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Algorithm 2 U-ATS

Input: An anomalous temporal graph GA = (V, {Et, φt}t∈T ), a
time window W .

Output: A subset of vertices (subgraph) S∗ ⊆ V .

1: c← ∅, Q← ∅
2: for all u ∈ V do
3: p(u)← mint∈W deg(u, t)
4: insert u in Q with priority score p(u)

5: k ← 0
6: while Q �= ∅ do
7: u← highest-priority vertex in Q
8: p(u)← priority score of u in Q
9: if p(u) > k then

10: k ← p(u)

11: c[u]← k

12: {update priority queue}
13: for all t ∈W , v ∈ Q | (u, v) ∈ Et do
14: deg(v, t)← deg(v, t)− φt(u, v)

15: for all t ∈W , v ∈ Q | (u, v) ∈ Et do
16: p(v)← priority score of v in Q
17: p′(v)← mint∈W deg(v, t)
18: update order of v in Q based on the new priority score p′(v)

(if p′(v) �= p(v))

19: remove u from GA
20: S∗ ← {u ∈ V | c[u] = k}

for all k ∈ [1..k∗], forms the core decomposition of G. The

linear time algorithm proposed by Batagelj and Zaveršnik [3]

iteratively removes the smallest-degree vertex from the graph

and sets the core number of the removed vertex accordingly.

The U-ATSD problem resembles the problem of extracting

the inner-most core of a graph, but it comes with two addi-

tional challenges: (i) our input is a temporal graph composed

of multiple snapshots, and (ii) the maximization of the min

degree should be ensured for all snapshots corresponding

to the instants in the given time window. Despite being

more complicated than inner-most-core extraction, the U-ATSD

problem can still be solved in polynomial time.

The algorithm to solve the U-ATSD problem is inspired

by the one by Batagelj and Zaveršnik, where the vertex to

be removed at each step is the one with minimum weighted

degree in the whole time window W , i.e., a vertex u minimiz-

ing mint∈W degG′(u, t), where G′ is the anomalous temporal

graph at the current iteration. The pseudocode of the U-ATS
algorithm is reported as Algorithm 2. The time complexity of

Algorithm 2 is O(|W |m log n) (n = |V |, m = maxt∈T |Et|).
The overall number of operations after all vertices have been

processed is O(|W |m). This cost should be multiplied by a

logarithmic factor due to the maintenance of the priority queue.

The next theorem shows the soundness of the algorithm.

Theorem 2. Algorithm 2 returns a solution to Problem 2.

Proof. A vertex property function on a graph G = (V,E) is

a function g : V × 2V → R. A vertex property function g is

said monotone if for all C1, C2 ⊆ V : C1 ⊆ C2 it holds that

∀v ∈ V : g(v, C1) ≤ g(v, C2) [3]. Let GA = (V, {Et, φt}t∈T )
be an anomalous temporal graph and let W be a time window.

For any vertex u ∈ V and subgraph S ⊆ V , let g be defined as

Algorithm 3 DenseTemporal

Input: An anomalous temporal graph GA = (V, {Et, φt}t∈T ), a
time window W ,

1: two integers K,N ≥ 1.

Output: A set S∗ = {Si}Ki=1 of K disjoint subgraphs of GA, with
|S| ≤ N, ∀S ∈ S∗.

2: S∗ ← ∅
3: while |S∗| < K do
4: S ← U-ATS (GA,W ) {Algorithm 2}
5: if |S| > N then
6: run the min-degree-vertex removal phase of Algorithm 2

on S until it becomes empty and generate a set of subgraphs
S = {Ŝ1, . . . , Ŝ|S|}, with Ŝ1 = S

7: S ← argmaxi∈[|S|−N+1..|S|] δ(Ŝi,W )

8: remove the subgraph induced by S from GA
9: S∗ ← S∗ ∪ {S}

Algorithm 4 Buzz

Input: A temporal graph G = (V, {Et, ft}t∈T ), a time window W ,
three integers r,K,N ≥ 1.

Output: A set S∗ of K subsets of vertices of G.

1: generate an anomalous temporal graph GA by running Algo-
rithm 1 on input 〈G, r〉

2: get S∗ by running Algorithm 3 on input 〈GA,W,K,N〉

g(u, S) := mint∈W degS(u, t). The vertex property function

g defined this way corresponds to the property at the basis

of the inner-most core to be output by the U-ATSD problem

(Equation (1)). It is easy to see that this property function is

monotone, as the weights on the edges of GA are non-negative,

hence the min degree (over all instants in W ) in a subgraph S
is no less than the corresponding min degree in a supergraph

of S. The proof is completed by the Batagelj and Zaveršnik

result [3]: for a monotone vertex property function g, the

algorithm that repeatedly removes a vertex with the smallest

g value correctly determines cores based on g. �

The U-ATS algorithm provides a solid basis for solving

the general ATSD problem. The method we propose is indeed

an extension of U-ATS where we ask for two additional

requirements: (i) the output subgraph(s) should be bounded

in size, and (ii) multiple subgraphs need to be output. The

first requirement is met by keeping iterating the min-degree-

vertex removal phase of the U-ATS algorithm until we are

left with an empty graph. This procedure generates a set of

subgraphs. The subgraph with highest density δ among the

ones with size at most N is output. As far as outputting

multiple subgraphs, we adopt an intuitive strategy where, once

the first subgraph has been found, it is removed from the

graph, and the next subgraph is identified by running the

algorithm on the remaining graph, until K subgraphs have

been extracted. All steps of the proposed algorithm are in

Algorithm 3. The time complexity of the algorithm is K times

the time complexity of U-ATS, that is O(K|W |m log n).

C. The overall Buzz approach

The overall approach we propose to identify buzzing stories

is summarized in Algorithm 4. The algorithm consists in se-
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quentially running the aforementioned Step 1 and Step 2, and

its overall time complexity is O((|T |+K|W |)×m log n),
with n being the number of vertices in the input graph and

m = maxt∈T |Et|. Step 1 can be performed offline and then

be updated incrementally for every new time instant. At query

time, we only need to perform Step 2, which leads to an online

time complexity of only O((K|W |)×m log n).

III. EXPERIMENTAL EVALUATION

This section describes the empirical evaluation we con-

ducted to assess the performance of our Buzz method.

Dataset. We experimented with real-world data extracted

from a query log of a popular commercial web-search en-

gine.2Web-search queries have been traditionally used in the

story-identification literature [13, 23]. Indeed, relevant real-

world events raise interest/concern in people, who naturally

turn to search engines to gather information. This renders

online searches a valuable source to seek buzzing stories. We

analyzed an anonymized sample of that query log, spanning

about 18 months from 2013-2014. From this dataset, which we

dub QLog , we derived a temporal graph G and an anomalous

temporal graph GA. We point out that the proposed method

is general enough to be applied to any other type of user-

generated content, such as data from microblogs/social net-

works. We defer the use of other datasets to future work.

Building the G graph. The QLog dataset spans a time horizon

T of 558 days, and contains hundreds of billions of queries,

with tens of millions of distinct terms. To filter out noise, we

pre-processed QLog retaining, for every day t ∈ T , only the

queries with at least 50 occurrences. We derived from QLog

a temporal graph G = (V, {Et, ft}t∈T ), consisting of daily

snapshots. The snapshot (Et, ft) of each day t ∈ T was

extracted from the set Qt of all queries submitted at day t,
with the respective number of occurrences. From each query

q ∈ Qt we extracted all distinct pairs of non-stop-word terms,

and built the edge set Et as the set of term pairs co-occurring

in at least one query q ∈ Qt. Each edge (u, v) was assigned a

raw weight ft(u, v) equal to the sum of the occurrences of all

originating queries from Qt where u and v are both present.

Building the anomalous GA graph. We built the anomalous

temporal graph GA from the raw temporal graph G by running

the algorithm AnomalyScores (see Section II-A) with r = 7,

i.e., setting the reference time for computing anomaly scores

to one week before. The choice of r (as well as the length of

the time window) obviously impact the type of events that we

detect. Local and small-scaled events might require smaller

slots and finer granularity. However, in line with related work

[19, 20], we are interested in world-wide stories with a lasting

impact on social-media users. All graphs were built with a

Hadoop implementation of the above process, exploiting a

cluster of 500 nodes. Table I reports statistics on GA and G.

Competitors. We compared our Buzz method to the two main

approaches discussed in the Introduction. The first approach

2Yahoo Web Search

TABLE I: Statistics for G and GA
Vertices Edges

G GA G GA

Mean 6 933 237 1 554 728 129 771 466 9 849 487
SD 0 628 347 0 5 402 513

TABLE II: Examples of stories detected by our Buzz method.
# Date |W | N Story
1 2014-01-13 1 10 cristiano dor wins ronaldo fifa ballon
2 2014-01-28 2 25 mexico templar treasure knights
3 2014-02-07 3 10 sochi russian nbc opening watch ceremony
4 2014-02-09 3 10 day figure russia julia skating medal ceremony
5 2014-02-19 2 25 protests live ukrainian police kiev
6 2014-02-27 2 30 captains costa wreck concordia
7 2014-06-16 3 25 nebraska failure llc tornado monday big
8 2014-03-12 3 15 crash malaysian plane flight mh370 missing
9 2014-06-25 1 25 charlie rangel primary election

10 2014-04-06 2 20 ufo deer nasa people kowloon sightings china
11 2014-04-10 2 25 gymnast lloimincia legs hall girls alabama
12 2014-03-03 5 10 acceptance jared speech leto novak oscars goldie
13 2014-01-13 1 30 gracie ashley progeria parents scott berns
14 2014-01-13 2 30 scott progeria death berns
15 2014-01-13 3 10 search papa baby progeria death berns
16 2014-01-13 4 10 pictures progeria death berns

builds a graph modeling the association between domain

objects and looks for cohesive subgraphs in it, without consid-

ering deviations (anomalies) from the normal level observed

over the entire time horizon [2, 7, 16, 21, 23]. In our context

this corresponds to running Algorithm 3 on the original graph

G, and using a time-window size |W | = 1, whose unique

instant corresponds to the day where stories are identified. We

refer to this method as RGB (raw-graph baseline).

The second approach applies an anomaly model to char-

acterize abnormal associations between domain objects. It

ignores object associations (i.e., it exploits no co-association

graph), and identifies stories by a-posteriori grouping objects

with similar anomalous behavior. Specifically, as a represen-

tative of this category, we considered SAX* [19].

Testbed. We considered the temporal graph G and the anoma-

lous temporal graph GA extracted from QLog , as described

above. We evaluated the proposed Buzz and the SAX* and

RGB competitors on a test set of 50 days, which were sampled

uniformly at random from the whole horizon T of 558 days

spanned by G and GA. For each selected date, we ran Buzz on

GA, RGB on G, and SAX* on the corresponding time series

of occurrences of individual terms.We varied window size W
(starting in the given date), maximum size N of each output

subgraph, and maximum number K of output subgraphs as

follows: |W | ∈ {1, 2, 3, 4, 5}, N ∈ {10, 15, 20, 25, 30},
K ∈ {10, 15, 20, 25, 30}. Testing 5 values for each parameter

led to a total of 125 different configurations to be given as

input to Buzz and RGB. In the case of SAX*, instead, the

only parameter that is defined is the window size |W |. Indeed,

this algorithm allows for specifying neither the number N
of stories nor the story size K. To ensure a fair comparison

between Buzz and RGB vs. SAX*, for a given value of N and

K, we thus retained the SAX* stories with size no more than

N , and, if SAX* had output more than K stories, we sampled

a random subset of size K. For the sake of robustness, the

sampling procedure was repeated 10 times and performance

indicators were obtained by averaging across the 10 samples.
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TABLE III: Examples of stories detected by the RGB baseline.
# Date N Story
1 2014-01-13 1 earthquake rico puerto
2 2014-01-28 2 grammys 2014 monica lewinsky
3 2014-02-07 3 sochi ceremony opening olympics
4 2014-02-09 3 count medal sochi olympics skating figure young girl
5 2014-02-19 2 lansbury angela
6 2014-02-27 2 costa concordia
7 2014-06-16 3 happy fathers day pictures funny lebron james
8 2014-03-12 3 mh370 flight malaysia airlines
9 2014-06-25 1 bieber justin selena gomez grande ariana

10 2014-04-06 2 ufo sightings
11 2014-04-10 2 lsu gymnast
12 2014-03-03 5 leto jared

TABLE IV: Examples of stories detected by the SAX* baseline.
# Date Story
1 2014-01-13 community diet equipment helen

2 2014-01-28

lynch rosie started cadillac created torres trading uss auto-
mated beckinsale blanchett bodies cate coronado faris forex
greta hawaii kaling kate katrina knights miller pete required
review reviews robot robots seeger sienna software templar

3 2014-02-07 delivery divorce seymour thompson wife buy forum

4 2014-02-09

bras easter engagement jean laser petite posters rod davis death
dia earn ellen evelyn gifts jackie linda making meryl michael
money nike palm prison robinson skater skaters skating slips
speed tanya thrones tools types valentines walking 1990 an-
derson beatles bmw charlie colored concert crawford

5 2014-02-19

verde component configures detail fuck god quotations expedi-
tion gravity johnny mao michelle minibb mvnforum plymouth
scout seuss ukraine ukrainian vbulletin app artwork blackberry
brazzers civic classroom

6 2014-02-27

buffalo gordon jacket katy perry sale stevens survivor tebow
travis warship wilson alyssa ammo ammunition barrymore
blog blogs bulk bullock cheap concordia costa drew fmj
hudson journal leah mara mask oscar plane remini russian
sandra singles

7 2014-06-16 pamela playing tornado johnny original

8 2014-03-12
young holiday university sites cookies crime flight mh370 rob
scene

9 2014-06-25 stock store dicaprio fanny leonardo aaron collins

10 2014-04-06 jessica station watch chocolate east

11 2014-04-10 victorian obama single

12 2014-03-03

internet riley search stars adobe beth lara nudity brad brazil
carpet cate channing concept degeneres dressed ellen farmiga
garner goldie gomez hawn jared jennette job johansson kar-
dashian kendrick kim kinney lawrence leto liza loss lupita
margot matthew mccurdy minnelli museum norman novak
nyong olivia oscar oscars pitt portia robbie roberts rossi

A. Anecdotal evidence

In Tables II–IV we show some examples of buzzing stories

extracted by the proposed Buzz, and the RGB and SAX*
baselines, respectively. Table II shows that Buzz tends to

extract real-world events on different topics — sport, politics,

or show business — that became buzzing in those test days. A

number of stories are about sport: Cristiano Ronaldo winner

of the 2014 Baloon d’Or (Example #1); the open ceremony

of Sochi 2014 Olympic Winter Games (Example #3); the gold

medal of Yulia Lipnitskaya, a fifteen-year old Russian prodigy

in figure skating (Example #4); the perfect 10.0 scored by

the gymnast Lloimincia Hall for her routine against Alabama,

whose performance went viral (> 850K views online) in April

2014 (Example #11). Another bunch of stories (Examples

#5–#8) deal with natural disasters or catastrophic events: the

protests in Ukraine, the Costa Concordia cruise disaster, two

tornadoes that bore down two towns in northeast Nebraska, and

the disappearance of Malaysia Airlines Flight 370. Example

#9 is focused on the primary victory of congressman Charlie

Rangel of New York, after facing one of the most serious

TABLE V: Search frequency of the buzzing stories extracted.

Method Measure Mean Max.

RGB NumDays 390.7 558
Mean Freq 56 550 368 000

SAX* NumDays 0.169 383
Mean Freq 1.184 756.5

Buzz NumDays 3.609 558
Mean Freq 213.5 91 040

challenges of his career, while Example #10 concerns a

presumed sighting of a deer-like UFO over the city of Kowloon

in China. Varying the window size |W | seems to impact the

type of event detected. For instance, Example #12 testifies that

a larger |W | (5 in this case) allows for capturing particular

aspects of very popular events, like Jared Leto’s impressive

acceptance speech at the 2014 Oscars ceremony. Similarly,

Examples #13–#16 show a natural tendency of our Buzz
method to capture different aspects of the same key event.

All of these four examples are about the death of teenager

Sam Bern, which was caused by progeria disease, but varying

the size of the time-window leads to different additional terms

corresponding to different facets of the story. Tables III and IV

show that RGB and SAX* are to some extent able to detect

events that are similar in spirit to the ones detected by our

Buzz. However, both competitors exhibit a critical weakness:

RGB has a tendency to extract ever-popular topics, such as

full names of celebrities or searches for funny pictures, while

SAX* often combines (erroneously) multiple events in a single

one, likely due to the fact that SAX* does not admit any bound

on the size of the output stories.

B. Evaluation: Anomalous nature of the stories

Buzzing stories should possess two main characteristics: (i)
they should be anomalous enough, (ii) they should match

real events that took place in the time window considered.

The goal of our evaluation is to assess how good each set

of terms (subgraph) S output by any considered method is

with respect to these two different aspects. In the following

we focus on the first aspect, while the second aspect will

be discussed in the next subsection. Particularly, for the first

aspect we checked that the story does not match a concept that

is regularly searched by the web crowd (rarity of the event).

To this end, we involved two metrics: (i) search frequency in

QLog , (ii) inter-day similarity.

Search frequency. For each output story we checked how

much and how regularly it was searched within QLog in the

time horizon T . The rationale is that an anomalous story

should not be too frequent. To soundly seek matches in QLog ,

we processed queries and stories by removing stop-words and

non-alphanumeric characters, performing stemming [15], and

sorting the stemmed terms lexicographically. For each story,

we counted the number of distinct days it occurs in at least one

query of that day, as well as mean frequency over all its daily

occurrences. For each method, we then computed avg and max

of the above counts over all buzzing stories and reported them

in Table V. A striking difference exists among RGB on one

side, and SAX* and Buzz on the other side. RGB finds stories

corresponding to over-popular searches: half of the RGB’s

stories appear in the log almost every day (552 days over a
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TABLE VI: Average Jaccard coefficient between sets of stories
extracted in different days.
|W| RGB SAX* Buzz

1 0.0468 0.0000 0.0001
2 0.1145 0.0000 0.0000
3 0.1808 0.0000 0.0000
4 0.2141 0.0000 0.0000
5 0.2306 0.0000 0.0000

total of 558), and with high frequency (max story frequencies

above 13M ). Indeed, by manual inspection we verified that

many of these correspond to celebrities or navigational queries.

SAX* and Buzz are comparable to each other and behave very

differently from RGB: they extract sets of terms that occur

very seldom, i.e., the average number of distinct days they

appear in the log is 0.2 and 3.6, respectively. In conclusion,

employing an anomaly-detection model, which is a common

trait for SAX* and Buzz but not for RGB, appears to be

critical to avoid the pitfall of retrieving over-popular topics,

which not identify buzzing stories.

Inter-day similarity. As a second metric, we examined how

each method tends to extract the same stories for different

dates. The desideratum is that this does not happen, as an

anomalous story should not be too frequent. We tested this by

considering all possible pairs of (not necessarily consecutive)

days in our test set of 50 dates, and, for each pair of days, we

computed the Jaccard similarity (counting the bag of words

of each story as a distinct item) between the sets of stories

of each parameter configuration. Results (averaged over all

comparisons for a configuration and over all configurations)

are presented in Table VI. Once again, RGB behaves very

differently from the two other methods. For Buzz and SAX*
the average Jaccard similarity is always (almost) zero: this

is consistent with the fact that anomalous stories should not

appear repeatedly over time. On the other hand, similarity

among RGB’s stories is much higher, which further testifies

its non-anomalous nature.

C. Evaluation: Correspondence with real-world events

The second part of our evaluation was devoted to assessing

whether the detected stories match real-world events, which we

did by conducting (i) an editorial study with human assessors,

and (ii) an automated quantitative evaluation.

Editorial assessment. We recruited three human judges and

asked them to provide a YES/NO answer to the question:

“Does the story match a real event?” We encouraged editors

to query their preferred search engine with the terms and dates

of a story, and explore the corresponding results. Given that

the labeling was complex and time consuming, the assessment

was conducted on a sample of our test set. Specifically, we

randomly picked 16 < Date, |W |, N > configurations and

fixed K = 10. This led to a total of 464 candidate stories,

160 of which were extracted by Buzz, 160 by RGB, and 144

by SAX*. SAX* returned less stories as it does not allow for

specifying the number of output stories, and it found less than

10 events for some configurations. For each candidate event,

editors were shown the words of the story and the dates in

the time window. The stories returned by different methods

were randomly mixed. Each judge was asked to assess all 464

candidate events in our sample. Hence, the editorial evaluation

TABLE VII: Editorial evaluation
Method # Events YES Events NO Events

# % # %
ALL 464 272 58.6 192 41.4
SAX* 144 60 44.4 80 55.6
RGB 160 87 54.5 73 45.6
Buzz 160 121 75.6 39 24.2

TABLE VIII: Correspondence with real-world events.
RGB SAX* Buzz % Variation

Parameter avg cosine avg cosine avg cosine Buzz vs. SAX*

|W |

1 0.343 0.101 0.062 −39.1 %
2 0.370 0.107 0.128 19.8 %
3 0.305 0.071 0.109 53.3 %
4 0.281 0.030 0.077 156.6 %
5 0.199 0.010 0.058 475.7 %

N

10 0.299 0.064 0.120 86.9 %
15 0.297 0.064 0.092 43.7 %
20 0.300 0.064 0.077 20.9 %
25 0.301 0.064 0.074 15.8 %
30 0.301 0.064 0.071 11.8 %

K

10 0.303 0.075 0.101 34.8 %
15 0.301 0.068 0.094 37.1 %
20 0.300 0.063 0.087 36.9 %
25 0.298 0.059 0.080 36.3 %
30 0.297 0.055 0.073 34.1 %

provided us with 3 labels for each story. Each story was

assigned the label that was chosen by at least two editors.

Table VII summarizes the results, which show that our

Buzz evidently outperforms its competitors. We measured the

agreement among editors with the well-established Fleiss’

Kappa measure. Our task was quite complex and subjective,

thus we expected the inter-annotator agreement to be relatively

low. Nevertheless, we obtained a Fleiss’ Kappa value of 0.254,

which is customarily interpreted as a “fair” level of agreement

and thus demonstrates the appropriateness of the study.

Quantitative evaluation. We adopted an automated version

of the methodology in [19]: for any buzzing story, we issued

a web-search query composed of the terms of the story, we

retrieved the top result pages, and evaluated their quality in

terms of relatedness to the event. Again, the intuition is that

if one queries a search engine on a real event, the top results

should be recognized as related to the issued query.

For each detected story we formulated a query with the

terms of the story, plus all dates in [t − 1, t + |W | − 1],
where t is the input date and W is the specified time window.

For each query, we collected the top ten result pages from

the public API of a popular commercial search engine. We

represented each result as a bag of words, aggregating title,

snippet, and the last part of the url corresponding to the

page name. For each buzzing story we computed the cosine

similarity between its TF/IDF vector and the TF/IDF vector of

each result page, and averaged over the ten results. This way,

a higher cosine similarity is an indicator of higher pertinence

of the web-search results to the detected story, and, as such,

higher correspondence to a real event.

Performance comparison. Table VIII shows the outcome of

this experiment. Results for a parameter value were obtained

by averaging over all other parameters. The highest similarity

is achieved by RGB. However, based on the evaluation of the

anomalous nature of the stories, it is apparent that this mainly

depends on the inability of RGB in quantifying the anomaly

of a story, and not on a real superiority in detecting buzzing
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stories. Indeed, RGB mostly extracts term sets matching very

popular searches, such as gossip around celebrities, which con-

stantly raise attention over time, and thus cannot be considered

as buzzing. Also, these popular queries are typically short (e.g.,

just celebrity name), hence it is much easier to find search

results matching all terms in the story and achieve a higher

similarity. As a result, the only meaningful comparison for this

assessment is the one between Buzz and SAX*.

Table VIII shows that Buzz clearly outperforms SAX*. The

only case in which we observe a loss is for window size W =1,

which basically means asking for a story that is anomalous

during one day only. This is not a serious issue but rather a

limit case in our setting, where we target stories raising an

anomalous interest over a generally longer period. For |W | >
1, Buzz always wins over SAX*. The average gain of Buzz
decreases as the maximum story size N increases. This is

expected: if a story has more terms, it is less likely that a good

match with a snippet is found. Conversely, the gain increases

with the number K of stories. This is likely due to the fact

that SAX* is often unable to retrieve the number of stories

requested. The average running times of the online processing

are 1.3 s for Buzz, 1.5 s for SAX*, and 5.9 s for RGB: Buzz
is significantly faster than RGB and slightly faster than SAX*.

IV. RELATED WORK

Story identification. Existing approaches to story identifi-

cation fall into two main categories. The first one includes

graph-based approaches [2, 7, 16, 21, 23], while the second

one comprises methods that retain objects with anomalous

behavior in a specific time window, without relying on any

co-association graph [19, 20]. In this work we propose a novel

approach that combines ideas from the two existing categories

and extract cohesive subgraphs (stories) in an anomalous co-

association graph. An orthogonal problem is how to effi-

ciently maintain stories by incremental updating [1]. Existing

incremental strategies do not work for the novel method

we propose. Studying how buzzing stories can be efficiently

maintained is a non-trivial problem that we defer to future

work. Effort has also been devoted to related (but different)

problems, such as event evolution tracking [11, 13, 14] or

story-context identification [10].

Anomaly detection in temporal data. Anomaly detection

in temporal data is the problem of identifying objects whose

behavior in a temporal horizon deviates from the behavior

of other objects [9]. In this work we resort to anomaly

detection in the first step of our method, by employing a

model that trades off between simplicity and effectiveness (see

Section II-A). Our proposal is however orthogonal to this body

of research as any other more sophisticated model can be used.

Dense-subgraph discovery. Extracting dense substructures

from a graph is a well-established problem. Many definitions

of dense subgraph exist [12], including the popular notion of

average degree [6, 8] or k-core [17]. We use dense-subgraph

discovery as a tool for the second step of our approach,

by defining an appropriate definition of density for temporal

graphs. Density notions for temporal graphs have also been

introduced in [4, 22]. However, those notions are not suitable

for our context. Indeed, the notion by Bogdanov et al. [4]

is meaningful only for graphs that can have negative edge

weights. If weights are all non-negative like in our setting,

optimizing that density leads to trivial problem instances

where the solution is given by the entire input graph. Wu

et al. [22] instead define a notion of core decomposition for

temporal graphs, which doesn’t admit any time window of

interest as input, as required by our task.

V. CONCLUSIONS

We have advanced the literature on story identification from

user-generated content by proposing a novel two-step method

which profitably combine the peculiarities of the two main

existing approaches, thus also overcoming their limitations.

In the future we plan to investigate how buzzing stories can

be updated incrementally. We will also focus on other user-

generated content datasets, other anomaly-detection models in

the first step, different notions of cohesiveness in the second

step, and how to extract overlapping subgraphs, to allow

objects to appear simultaneously in different stories.
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