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Abstract. We introduce a mapping between graphs and pure quantum bipartite
states and show that the associated entanglement entropy conveys non-trivial
information about the structure of the graph. Our primary goal is to investigate
the family of random graphs known as complex networks. In the case of classical
random graphs, we derive an analytic expression for the averaged entanglement
entropy S̄ while for general complex networks we rely on numerics. For a large
number of nodes n we find a scaling S̄ ∼ c log n + ge where both the prefactor
c and the sub-leading O(1) term ge are characteristic of the different classes of
complex networks. In particular, ge encodes topological features of the graphs
and is named network topological entropy. Our results suggest that quantum
entanglement may provide a powerful tool for the analysis of large complex
networks with non-trivial topological properties.
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1. Introduction

Complex networks are models of graphs that appear capable of capturing the phenomenology
of a plethora of systems, from biology to the World Wide Web [1]. The departure from regular
lattices, the most common background geometry in solid state physics, allows for the rich static
and dynamic behavior of complex networks. This is due to the simultaneous presence of a
global compact structure and a sophisticated architecture of interactions. By compact structures
we refer to the typical small distance (with respect to a regular lattice) between nodes in the
network. The complexity of the network architecture is manifest in the entangled pattern of
links and paths that such objects display; see figure 1. This architecture encodes a type of
strong disorder that requires for its analysis some of the techniques developed in statistical
mechanics [2]. There exist a plethora of phenomenological quantities that provide information
on the architecture of a network: degree distribution, the clustering coefficient, community
structure measures and many others [1]. In particular, a few classical entropic measures have
been introduced to describe the structure of complex networks [3].

In this paper, we address the problem of the entropic analysis and discrimination of
networks using quantum information tools, notably entanglement entropy. Entanglement, a
purely quantum measure of correlation, is one of the fundamental concepts in quantum
information [4]. We provide a recipe, in a way the simplest possible one, to construct a pure
bipartite quantum state for a given graph. This allows us to study entanglement properties of
quantum states that are related to the topological features of the original graphs and that are
able to distinguish between different complex network topologies. Although at first sight it may
seem a bit artificial to look for a graph-entropy measure in a quantum context, the synergy
between quantum information and complex network tools is not new. For example, in [5, 6], the
authors have discussed different interesting ways of associating graphs with quantum states
and investigated in what sense complex networks may play a role in the quantum domain.
All these constructions are then similar in spirit but substantially different from the present
approach.

This paper is organized as follows. We first describe the construction of the quantum
bipartite network states. Then we introduce the families of complex networks that we consider
in this work. Subsequently, we define the notion of topological network entropy and apply it
to study the structure of different complex network topologies. Finally, we briefly discuss the
relation to former works and present our conclusions.
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Figure 1. Random graphs belonging to different ensembles: the Erdős–Rényi
(top left corner), preferential attachment (top right corner), small-world (bottom
left corner) and the same graph but with a different embedding (bottom right
corner).

2. Network quantum states

Any graph GA with n nodes is completely specified by its adjacency matrix A: a two-dimensional
(2D) array of size n, where each entry ai, j characterizes the connection between nodes i and
j . The domain of ai, j determines the kind of graph one is considering: directed, undirected,
weighted or unweighted. In this work, we focus on undirected unweighted graphs, the so-called
simple graphs, for which ai, j ∈ {0, 1} (the same analysis can be naturally extended to directed
and weighted graphs). In particular, if ai, j = 0 it means that there is no edge connecting the two
nodes i and j ; otherwise ai, j = 1. Sometimes it will be useful to refer also to non-simple graphs
with loops. Given the graph GA (A 6= 0) we define the following bipartite quantum state:

|A〉 ≡
1

‖A‖F

n∑
i, j=1

ai, j |i〉| j〉 ∈H1 ⊗H2, (1)

where ‖A‖F :=
√

TrA† A denotes the Frobenius norm of the matrix A andH1
∼=H2

∼= Cn. In the
fixed local basis {|i〉 : i = 1, . . . , n} we refer to |A〉 as a pure network state. It corresponds to
the state of two n-level systems, or analogously to the state of two n-qubit systems where each
subsystem of n qubits is constrained to the one-excitation manifold. The isomorphism class of a
graph corresponds to the orbit of the permutation group on the adjacency matrix: PAP t , where
P ∈ Sn are permutation matrices. This implies that the adjacency matrix of isomorphic graphs is
unique up to permutations of rows and columns, and the same holds true for the bipartite states
in equation (1). The reduced density matrix of the subsystem whose Hilbert space isH1 is given
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(in the given basis) by

ρA ≡ Tr2|A〉〈A| =
AA†

‖A‖
2
F

∈H1. (2)

We refer to this reduced density matrix as the mixed network state. Note that both definitions (1)
and (2) do not rely on A being symmetric and therefore extend immediately to oriented (and
weighted) graphs. We are interested in the correlation properties betweenH1 andH2, quantified
by the entanglement entropy [7]. Since this quantity depends only on the spectrum of the
adjacency matrix, it is a property of the isomorphism class of the graph, i.e. isomorphic graphs
will have the same entanglement entropy. Indeed, if P is an (orthogonal) permutation matrix:

|PAP t
〉 = P̂

⊗ 2
|A〉,where P̂ =

∑n
i, j=1 Pi, j |i〉〈 j |. Namely, isomorphic graphs give rise to locally

equivalent network states.
Before considering complex topologies, it is instructive to play with the simplest possible

examples and try to characterize maximally and minimally entangled network states. Note
that the unnormalized bipartite state can be written as A ⊗ I |I 〉, where |I 〉 =

∑n
i |i, i〉 is an

unnormalized maximally entangled state. The network corresponding to the state |I 〉 consists of
n nodes with loops, and by construction its adjacency matrix is the identity. Entanglement does
not change under local unitary transformations [7], so in order to construct other maximally
entangled network states we need to characterize all the adjacency matrices that correspond to
unitary operators. It is easy to prove that the set of unitary adjacency matrices coincides with the
set of permutation involutions, i.e. the permutation matrices that square to the identity. This is
also consistent with the fact that the square of the adjacency matrix is the unnormalized totally
mixed network state. Unitary adjacency matrices correspond to networks made of only loops
or disconnected linked pairs of nodes. On the other hand, factorized states (i.e. unentangled)
correspond to complete graphs with loops.

In the following, we study the properties of ensembles of random network states. The
probability measure in the space of network states is the one induced by the measure on the
space of random networks, according to the construction in equations (1) and (2).

3. Complex networks

In order to make the paper self-contained, let us briefly introduce three network structures that
we will use in the following. The seminal paper of Erdős and Rényi (ER) in 1959 defined what
is now the standard example of a random network [8]. The ER random graph model, denoted
by GER

n,m , is an ensemble of graphs where each element has n nodes and m edges. ER graphs are
also related to the so-called Gilbert models [9], denoted by GER

n,p, where an edge between each
pair of n nodes is present with a probability p. The Gilbert model is better suited for analytical
investigations, while GER

n,m graphs are numerically easier to study. In the thermodynamic limit,
fixing the average degree q of a node, one can constrain the two models to be related by
q = 2m/n = pn. If, for n → ∞, q/n → 0, the network is said to be sparse. The other example
of a complex network that we consider is known as the Barabási–Albert model [10], denoted
by GBA, based on a growth process and a preferential attachment mechanism. The rationale
is that nodes with higher degree acquire new nodes at higher rates than other lower-degree
nodes. Nodes are added successively, and for each node a number d of edges is generated, with
bias towards connections with higher-degree nodes. The distribution for the number of links
emanating from a node is not Poissonian, like for ER graphs, but rather follows a power law.
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Another way of modelling stochasticity in the connectivity pattern of a graph is by randomly
destroying the periodicity of a regular lattice. This is the idea behind small-world networks,
denoted by GSW

p,k , as proposed by Watts and Strogatz [11]. They can be created by randomly
adding bonds to a regular 1D ring, this way building a superposition between regular lattices and
classical random graphs. The probability p according to which new bonds are added at random
is a parameter characterizing the ensemble, and it allows us to interpolate from regular graphs
(p = 0) to ER random graphs (p = 1). The other parameter for this kind of network is denoted
by k, and it quantifies the number of next-nearest-neighbor links present in the original regular
graph. For each of the above complex network ensembles, we shall construct the associated
ensemble of random network states denoted byψER, ψBA andψSW, and we will consider scaling
properties of the average entanglement entropies.

4. Topological network entanglement

We start by evaluating analytically the averaged Rényi entropy of network states in ψER, the
states associated with the ensemble of ER random graphs. The α-Rényi entropy of a state is
defined by Rα(ρ)≡ (1 −α)−1 log2 Tr ρα. Using the definition of ρA given in equation (2) we
have

Rα(ρA)=
log2 TrA2α

−α log2 TrA2

1 −α
. (3)

We are interested in the scaling in n of the average Rényi entropy Rα. In order to provide an
explicit expression for Rα we use the fact that for each α there exists a constant c2α such that
limn→∞ n−1TrA2α = c2α, i.e. for sparse ER graphs the thermodynamic limits of the moments
of the graph spectrum exist and are finite [12]. Furthermore, one can check numerically
that the difference between the quenched average (1 −α)−1log2 ρ

α and the annealed average
(1 −α)−1 log2 ρ

α scales as n−1. Putting this together we can write

Rα(ρA)[n] = log2 n + g(α)+ O

(
1

n

)
, (4)

where g(α) := log2 c2 + (1 −α)−1(log2 c2α − log2 c2) is a sub-leading O(1) term. This equation
tells us that the Rényi entropy is almost maximal for any α. Note that, even though the
logarithmic scaling for these network states is consistent with the one of general (Haar
distributed) random states [14], one could not predict a priori this behavior for the particular
family of random states we introduced. Remarkably, the sub-leading term contains information
about the topology of the graphs. In fact, the term c2α is directly related to the average
number of closed paths of length 2α in the graph. In figure 2(a), we provide a numerical
check of equation (4), which supports in particular the approximation of the quenched with
the annealed average. The figure shows perfect agreement between equation (4) and the results
of the simulation. It is tempting to extrapolate our analysis from the Rényi entropy to the von
Neumann entanglement entropy, which is defined by S ≡ limα→1 Rα. By construction it follows
immediately the logarithmic scaling of the von Neumann entropy, while for the sub-leading
term we have ge := limα→1 g(α)= log2 c2 −

d log c2x

dx |x=1 and then, using the definition of c2α, one
finds that

ge = log2 c2 −
TrA2 log2 A2

TrA2
. (5)
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Figure 2. (a) The average Renyi entropy Rα obtained numerically and the
analytical prediction (dashed and continuous lines) for ER quantum random
states. The open square symbols correspond to the α = 2 data points, while
the open circles are for α = 3. (b) The average von Neumann entropy obtained
numerically and the analytical prediction for the states corresponding to GER

n,n.
(c) ge as a function of β in GER

n,βn log2 n. (d) ge as a function of the rewiring
probability p, for small-world networks in GSW

p,2 .

It is interesting to observe that the second term in equation (5) can be regarded as a sort
of topological susceptibility of the given family of networks. In fact this term is equal to
−

log c2x

dx |x=1, and it tells us how the logarithm of the rescaled averaged number of loops of length
2α changes as the length is changed continuously around α = 1. For this reason, and in view of
its conceptual similarity to the topological entanglement entropy introduced in [13], we call the
O(1) quantity in equation (5) the topological network entanglement.

In figure 2(b), we show a comparison between the analytical expression for the von
Neumann entropy, obtained using equation (5), and the empirical average of the entanglement
entropy over different realizations. As can be seen from the figure there is perfect overlap
between the two. The ensemble GER

n,m is parameterized by the number of edges m. One can
wonder about the behavior of ge as m varies in some particular interval, but in such a way
that the graph is always sparse. Figure 2(c) shows the value of ge as a function of a parameter
β ∈ (0, 1], which is related to the number of edges by m = βn log2 n. The figure shows that for
ER graphs, the greater the number of links the greater the entanglement. We now evaluate ge

numerically for small worlds and preferential attachment networks. Considering first networks
in GSW

p,k we checked numerically that the scaling is logarithmic and that the prefactor is always
1. In figure 2(d), we see the dependence of ge on p, the probability of rewiring edges.
The figure shows that ge increases monotonically from regular to more random graphs. This
is consistent with the intuition that adding randomness to a graph increases its entropy, as
measured by ge. From these results it is clear that the properties of the entanglement entropy
provide information on the complex network structure, supporting its interpretation as a graph
entropic quantity. Considering the ability to discriminate between different network topologies,
in figure 3 we compare the scaling of the average von Neumann entropy of ψER

n,n, ψSW
0.1,2 and ψBA

random network states. The simulations show that, unlike for ER and small-world networks, the
logarithmic prefactor for ψBA states is slightly smaller than 1. From the figure, it is clear that
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Figure 3. The average von Neumann entropy obtained numerically for different
quantum random states and the linear fit of the data points.

the von Neumann entropy distinguishes different complex network ensembles. For sufficiently
big networks the fluctuations due to disorder are strongly suppressed. On the one hand, this
is an indication of the robustness of this graph-entropic measure; on the other hand, it can
also be useful from a computational point of view. In fact, one has a very good estimate
of the entanglement entropy already from a few realizations. Hence, if the network is big
enough, the scaling analysis could in principle be performed on a single realization, for example
evaluating the entanglement entropy on sub-graphs of increasing size. Furthermore, whenever
computational efficiency is an issue, we point out that instead of the von Neumann entropy one
could evaluate the so-called single-copy entanglement (limα→∞ Rα) [15], for which efficient
numerical techniques can be used [16].

5. Discussion and conclusions

In this paper, we have exploited a natural mapping from graphs to quantum bipartite states
and we have defined the entropy of a graph as the entanglement entropy of the associated
quantum state. We have then used this quantum measure of correlations to study the structure
of complex networks. The scaling of the entanglement entropy is logarithmic in the system
dimension, and both the prefactor and the sub-leading O(1) term (topological network entropy)
can be used to characterize the network family and to distinguish between different network
topologies. In particular, we showed that the Barabási–Albert model has scaling behavior that
differs significantly from that of small-world and ER graphs. While the last two have a similar
scaling, they still are distinguishable comparing graphs with the same number of edges. This
is consistent with the fact that small-world networks are a mixture of regular lattices and ER
graphs. Furthermore, we provided an analytic expression, exact in the thermodynamic limit, for
the averaged Rényi and von Neumann entropy associated with ER random graphs. It is desirable
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to achieve a clear and general understanding of the relations between the quantum entropic
measures we introduced and the standard graph-theoretic observables analyzed in the complex-
network community. One would like to also gain a deeper insight into the measure concentration
(large-size convergence) properties of the various probabilistic objects we discussed for the
different families of complex networks. While the primary goal of this paper has been to show
how to use quantum tools to investigate complex networks, it should be clear that also the
converse task, i.e. using properties of a complex network to study the novel class of random
quantum states we introduced, is of interest in its own right. Moreover, on the quantum side, it
is a challenge to find a consistent inverse mapping that allows one to associate a specific network
with a general bipartite quantum state. Finally, one would like to devise efficient and physically
feasible preparation schemes for the network quantum states we proposed.
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