
Chapter 5
Theoretical Tools in Modeling Communication
and Language Dynamics

Vittorio Loreto

Abstract Statistical physics has proven to be a very fruitful framework to describe
phenomena outside the realm of traditional physics. In social phenomena, the ba-
sic constituents are not particles but humans and every individual interacts with a
limited number of peers, usually negligible compared to the total number of people
in the system. In spite of that, human societies are characterized by stunning global
regularities that naturally call for a statistical physics approach to social behavior,
i.e., the attempt to understand regularities at large scale as collective effects of the
interaction among single individuals, considered as relatively simple entities. This
is the paradigm of Complex Systems: an assembly of many interacting (and simple)
units whose collective behavior is not trivially deducible from the knowledge of the
rules governing their mutual interactions. In this chapter we review the main theo-
retical concepts and tools that physics can borrow to socially-motivated problems.
Despite their apparent diversity, most research lines in social dynamics are actu-
ally closely connected from the point of view of both the methodologies employed
and, more importantly, of the general phenomenological questions, e.g., what are
the fundamental interaction mechanisms leading to the emergence of consensus on
an issue, a shared culture, a common language or a collective motion?

1 Introduction

One of the first questions the reader could about this chapter is what physics in gen-
eral, and statistical physics in particular, has to do with the problem of the emergence
of language.

Statistical physics has proven to be a very fruitful framework to describe phe-
nomena outside the realm of traditional physics (Loreto and Steels 2007). The last
few years have witnessed the attempt by physicists to study collective phenomena
emerging from the interactions of individuals as elementary units in social struc-
tures (Castellano et al. 2009). In social phenomena, the basic constituents are not
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particles but humans and every individual interacts with a limited number of peers,
usually negligible compared to the total number of people in the system. In spite of
that, human societies are characterized by stunning global regularities (Buchanan
2007). There are transitions from disorder to order, like the spontaneous formation
of a common language/culture or the emergence of consensus about a specific is-
sue. There are examples of scaling and universality. These macroscopic phenomena
naturally call for a statistical physics approach to social behavior, i.e., the attempt to
understand regularities at large scale as collective effects of the interaction among
single individuals, considered as relatively simple entities. This is the paradigm of
the Complex Systems science: an assembly of many interacting (and simple) units
whose collective (i.e., large scale) behavior is not trivially deducible from the knowl-
edge of the rules that govern their mutual interactions.

Now consider the problem of the emergence of language. It is of course true that
if one adopts a static point of view where language is seen as a “system” frozen at
a particular point in time with its sound structure, vocabulary and grammar, there is
no place for statistical physics oriented studies. But as linguists begin to get access
to more and more data from systematic recordings and the massive volume of text
appearing on the World Wide Web, and as they look at new language-like commu-
nication systems that have emerged recently—such as text messaging protocols for
use with mobile phones or social tagging of resources available on the web—doubts
arise whether human communication systems can be captured within a static picture
or in a clean formal calculus. The static picture is giving way to a view where lan-
guage is undergoing constant change as speakers and hearers use all their available
resources in creative ways to achieve their communicative goals.

This is the point of view of semiotic dynamics (Steels 2000) which looks at lan-
guage as an adaptive evolving system where new words and grammatical construc-
tions may be invented or acquired, new meanings may arise, the relation between
language and meaning may shift (e.g., if a word adopts a new meaning), the rela-
tion between meanings and the world may shift (e.g., if new perceptually grounded
categories are introduced). All these changes happen both at the individual and the
group level, the focus being on the interactions among the individuals as well as on
horizontal, i.e., peer-to-peer, communications. Semiotic dynamics is the sub-field of
dynamics that studies the properties of such evolving semiotic systems. In this new
perspective, complex systems science turns out to be a natural ally in the quest for
the general mechanisms underlying the emergence of a shared set of conventions in
a population of individuals.

In semiotic dynamics models, assume a population of agents that have only local
interactions and carry out some communicative task, such as drawing the attention
of another agent to an object in their surroundings by using a name. Typically agents
do not start with a given communication system but must build one up from scratch.
The communication evolves through successive conversations, i.e., events that in-
volve a certain number of agents (two, in practical implementations) and meanings.
It is worth remarking that here conversations are particular cases of language games
which, as already pointed out in Wittgenstein (1953a, 1953b), can be used to de-
scribe linguistic behavior, even if they can include also non-linguistic behavior, such
as pointing.
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A conceptual difficulty immediately arises when trying to approach language
dynamics, and more generally social dynamics from the point of view of statistical
physics. In usual applications, the elementary components of the systems investi-
gated, atoms, and molecules, are relatively simple objects whose behavior is very
well known: the macroscopic phenomena are not due to a complex behavior of sin-
gle entities, rather to nontrivial collective effects resulting from the interaction of a
large number of “simple” elements.

Humans are exactly the opposite of such simple entities: the detailed behavior of
each of them is already the complex outcome of many physiological and psycho-
logical processes, still largely unknown. No one knows precisely the dynamics of a
single individual, nor the way he interacts with others. Moreover, even if one knew
the very nature of such dynamics and such interactions, they would be much more
complicated than, say, the forces that atoms exert on each other. It would be im-
possible to describe them precisely with simple laws and few parameters. Therefore
any modeling of social agents inevitably involves a huge and unwarranted simplifi-
cation of the real problem. It is then clear that any investigation of models of social
dynamics involves two levels of difficulty. The first is in the very definition of sen-
sible and realistic microscopic models; the second is the usual problem of inferring
the macroscopic phenomenology out of the microscopic dynamics of such models.
Obtaining useful results out of these models may seem a hopeless task.

The critique that models used by physicists to describe social systems are too
simplified to describe any real situation is most of the times very well grounded.
This applies also to highly acclaimed models introduced by social scientists, such as
Schelling’s model for urban segregation (Schelling 1971) and Axelrod’s model for
cultural dissemination (Axelrod 1997). But in this respect, statistical physics brings
an important added value. In most situations, qualitative (and even some quantita-
tive) properties of large scale phenomena do not depend on the microscopic details
of the process. Only higher-level features, such as symmetries, dimensionality, or
conservation laws, are relevant for the global behavior. With this concept of univer-
sality in mind one can then approach the modelization of social systems, trying to
include only the simplest and most important properties of single individuals and
looking for qualitative features exhibited by models. A crucial step in this perspec-
tive is the comparison with empirical data, which should be primarily intended as an
investigation into whether the trends seen in real data are compatible with plausible
microscopic modeling of the individuals, are self-consistent, or require additional
ingredients.

2 Concepts and Tools

Opinions, cultural, and linguistic traits are always modeled in terms of a small set
of variables whose dynamics is determined by the structure of the social interac-
tions. The interpretation of such variables will be different in the various cases: a
binary variable will indicate yes/no to a political question in opinion dynamics, two
synonyms for a certain object in language evolution or two languages in language
competition. Other details may differ, but often results obtained in one case can
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immediately be translated in the context of other sub-fields. In all cases the dynam-
ics tends to reduce the variability of the initial state and this may lead to consensus
(ordered state), where all the agents share the same features (opinion, cultural or lin-
guistic traits) or to a fragmented (disordered) state. The way in which those systems
evolve can thus be addressed in a unitary way using well-known tools and concepts
from statistical physics. In this spirit some of the relevant general questions we will
consider in the review include: What are the fundamental interaction mechanisms
that allow for the emergence of consensus on an issue, a shared culture, a common
language? What favors the homogenization process? What hinders it?

Generally speaking, the drive toward order is provided by the tendency of inter-
acting agents to become more alike. This effect is often termed “social influence” in
the social science literature (Festinger et al. 1950) and can be seen as a counterpart
of ferromagnetic interaction in magnets. Couplings of anti-ferromagnetic type, i.e.,
pushing people to adopt a state different from the state of their neighbors, are also
in some cases important and will be considered.

Any modelization of social agents inevitably neglects a huge number of details.
One can often take into account in an effective form such unknown additional in-
gredients assuming the presence of noise. A time-independent noise in the model
parameters often represents the variability in the nature of single individuals. On the
other hand, a time-dependent noise may generate spontaneous transitions of agents
from one state to another. A crucial question then has to do with the stability of
the model behavior with respect to such perturbations. Do spontaneous fluctuations
slow down or even stop the ordering process? Does diversity of agents’ properties
strongly affect the model behavior?

An additional relevant feature is the topology of the interaction network. Tradi-
tional statistical physics usually deals with structures whose elements are located
regularly in space (lattices) or considers the simplifying hypothesis that the inter-
action pattern is all-to-all, thus guaranteeing that the mean field approximation is
correct. This assumption, often also termed homogeneous mixing, generally per-
mits analytical treatment, but it is hardly realistic in a social context. Much more
plausible interaction patterns are those denoted as complex networks (see Sect. 2.2).
The study of the effect of their nontrivial topological properties on models for social
dynamics is a very hot topic.

One concept playing a special role in many social dynamic models and having
no equally common counterpart in traditional statistical physics is “bounded confi-
dence,” i.e., the idea that in order to interact, two individuals must not be too differ-
ent. This parallels somewhat the range of interaction in physics: if two particles are
too far apart they do not exert any influence on each other. However, let us stress
that the distance involved in bounded confidence is not spatial, but rather is defined
in a sort of opinion space.

2.1 Order and Disorder: The Ising Paradigm

In the previous section we have seen that the common theme of social dynamics is
the understanding of the transition from an initial disordered state to a configuration
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that displays order (at least partially). Such types of transitions abound in traditional
statistical physics (Kubo et al. 1985; Huang 1987). It is worth summarizing some
important concepts and tools used in that context as they are relevant also for the
investigation of social dynamics. We will illustrate them using a paradigmatic ex-
ample of order–disorder transitions in physics, the one exhibited by the Ising model
for ferromagnets (Binney et al. 1992). Beyond its relevance as a physics model, the
Ising ferromagnet can be seen as a very simple model for opinion dynamics, with
agents being influenced by the state of the majority of their interacting partners.

Consider a collection of N spins (agents) si that can assume two values ±1.
Each spin is energetically pushed to be aligned with its nearest neighbors. The total
energy is

H = −1

2

∑

〈i,j〉
sisj , (1)

where the sum runs on the pairs of nearest-neighbors spins. Among the possible
types of dynamics, the most common (Glauber–Metropolis) (Landau and Binder
2005) takes as elementary move a single spin flip that is accepted with probability
exp(−�E/kBT ), where �E is the change in energy and T is the temperature. Fer-
romagnetic interactions in (1) drive the system toward one of two possible ordered
states, with all positive or all negative spins. At the same time, thermal noise injects
fluctuations that tend to destroy order. For low temperature T the ordering tendency
wins and long-range order is established in the system, while above a critical tem-
perature Tc, the system remains macroscopically disordered. The transition point
is characterized by the average magnetization m = 1/N

∑
i〈si〉 passing from 0 for

T > Tc to a value m(T ) > 0 for T < Tc. The brackets denote the average over dif-
ferent realizations of the dynamics. This kind of transition is exhibited by a wealth
of systems. Let us simply mention, for its similarity with many of the social dy-
namic models discussed in the review, the Potts model (Wu 1982), where each spin
can assume one out of q values and equal nearest neighbor values are energetically
favored. The Ising model corresponds to the special case q = 2.

It is important to stress that above Tc no infinite-range order is established, but
on short spatial scales, spins are correlated: there are domains of +1 spins (and
others of −1 spins) extended over regions of finite size. Below Tc instead these
ordered regions extend to infinity (they span the whole system), although at finite
temperature some disordered fluctuations are present on short scales (Fig. 1).

Not only the equilibrium properties just described, which are attained in the long
run, are interesting. A much-investigated and nontrivial issue (Bray 1994) is the way
the final ordered state at T < Tc is reached when the system is initially prepared in
a fully disordered state. This ordering dynamic is a prototype for the analogous
processes occurring in many models of social dynamics. On short time scales, co-
existing ordered domains of small size (both positive and negative) are formed. The
subsequent evolution occurs through a coarsening process of such domains which
grows larger and larger while their global statistical features remain unchanged over
time. This is the dynamic scaling phenomenon: the morphology remains statistically
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Fig. 1 Snapshots of equilibrium configurations of the Ising model (from left to right) below, at
and above Tc

the same if rescaled by the typical domain size, which is the only relevant length in
the system and grows over time as a power-law.

Macroscopically, the dynamic driving force toward order is surface tension. In-
terfaces between domains of opposite magnetization cost in terms of energy and
their contribution can be minimized by making them as straight as possible. This
type of ordering is often referred to as curvature-driven and occurs in many of the
social systems described in this review. The presence of surface tension is a con-
sequence of the tendency of each spin to become aligned with the majority of its
neighbors. When the majority does not play a role, the qualitative features of the
ordering process change.

The dynamic aspect of the study of social models requires the monitoring of suit-
able quantities able to properly identify the buildup of order. The magnetization of
the system is not one of such suitable quantities. It is not sensitive to the size of
single ordered domains while it measures their cumulative extension, which is more
or less the same during most of the evolution. The appropriate quantity to monitor
the ordering process is the correlation function between pairs of spins at distance r

from each other, C(r, t) = 〈si(t)si+r (t)〉−〈si(t)〉2, where brackets denote averaging
over dynamic realizations and an additional average over i is implicit. The temporal
variable t is measured as the average number of attempted updates per spin. The
dynamic scaling property implies that C(r, t) is a function only of the ratio between
the distance and the typical domain size L(t): C(r, t) = L(t)dF [r/L(t)]. L(t) grows
in time as a power-law t1/z. The dynamic exponent z is universal, independent of
microscopic details, possibly depending only on qualitative features as conserva-
tion of the magnetization or space dimensionality. In the Glauber–Metropolis case,
z = 2 in any dimension. Another quantity often used is the density of interfaces
na(t) = Na(t)/Np , where Np is the total number of nearest neighbor pairs and Na

the number of such pairs where the two neighbors are in different states: na = 1/2
means that disorder is complete, while na = 0 indicates full consensus.

Finally, a word about finite size effects. The very concept of order-disorder phase-
transitions is rigorously defined only in the limit of a system with an infinite number
of components (thermodynamic limit), because only in that limit truly singular be-
havior can arise. Social systems are generally composed of a large number N of
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agents, but by far fewer than the number of atoms or molecules in a physical sys-
tem. The finiteness of N must therefore play a crucial role in the analysis of mod-
els of social dynamics (Toral and Tessone 2007). Studying what happens when N

changes and even considering the large-N limit is generally very useful, because
it helps characterizing well-qualitative behaviors, understanding which features are
robust, and filtering out non-universal microscopical details.

2.2 Role of Topology

An important aspect always present in social dynamics is topology, i.e., the structure
of the interaction network describing who is interacting with whom, how frequently
and with which intensity. Agents are thus supposed to sit on vertices (nodes) of a
network, and the edges (links) define the possible interaction patterns.

The prototype of homogeneous networks is the uncorrelated random graph model
proposed by Erdös and Rényi (ER model) (Erdös and Rényi 1959, 1960), whose
construction consists in drawing an (undirected) edge with a fixed probability p

between each possible pair out of N given vertices. The resulting graph shows a
binomial degree distribution, the degree of a node being the number of its connec-
tions, with average 〈k〉 � Np. The degree distribution converges to a Poissonian
for large N . If p is sufficiently small (order 1/N ), the graph is sparse and presents
locally tree-like structures. In order to account for degree heterogeneity, other con-
structions have been proposed for random graphs with arbitrary degree distributions
(Molloy and Reed 1995, 1998; Aiello and Lu 2001; Goh et al. 2001; Catanzaro et
al. 2005).

A well-known paradigm, especially for social sciences, is that of “small-world”
networks in which, on the one hand, the average distance between two agents is
small (Milgram 1967), growing only logarithmically with the network size, and, on
the other hand, many triangles are present, unlike ER graphs. In order to recon-
cile both properties, Watts and Strogatz have introduced the small-world network
model (Watts and Strogatz 1998) which allows us to interpolate between regular
low-dimensional lattices and random networks, by introducing a certain fraction
p of random long-range connections into an initially regular lattice (Newman and
Watts 1999). In Watts and Strogatz (1998) two main quantities have been consid-
ered: the characteristic path length L(p), defined as the number of edges in the
shortest path between two vertices, averaged over all pairs of vertices, and the clus-
tering coefficient C(p), defined as follows. If a node i has k connections, then at
most k(k − 1)/2 edges can exist between its neighbors (this occurs when every
neighbor of i is connected to every other neighbor of i). The clustering coefficient
C(p) denotes the fraction of these allowable edges that actually exist, averaged
over all nodes. Small-world networks feature high values of C(p) and low values of
L(p).

Since many real networks are not static but evolving, with new nodes entering
and establishing connections to already existing nodes, many models of growing
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networks have also been introduced. The Barabási and Albert model (BA) (Barabási
and Albert 1999) has become one of the most famous models for complex hetero-
geneous networks, and is constructed as follows: starting from a small set of m fully
interconnected nodes, new nodes are introduced one by one. Each new node selects
m older nodes according to the preferential attachment rule, i.e., with probability
proportional to their degree, and creates links with them. The procedure stops when
the required network size N is reached. The obtained network has average degree
〈k〉 = 2m, small clustering coefficient (of order 1/N ) and a power law degree dis-
tribution P(k) ∼ k−γ , with γ = 3. Graphs with power law degree distributions are
referred to as scale-free networks.

An extensive analysis of the existing network models is beyond the scope of the
present review and we refer the reader to the huge amount of literature on the so-
called complex networks (Boccaletti et al. 2006; Albert and Barabási 2002; Doro-
govtsev and Mendes 2003; Newman 2003a; Pastor-Satorras and Vespignani 2004;
Caldarelli 2007). It is nevertheless important to mention that real networks often
differ in many respects from artificial networks. People have used the social net-
work metaphor for over a century to represent complex sets of relationships be-
tween members of social systems at all scales, from interpersonal to international.
A huge amount of work has been carried out about the so-called social network
analysis (SNA), especially in the social science literature (Moreno 1934; Granovet-
ter 1973, 1983; Wasserman and Faust 1994; Scott 2000; Freeman 2004). Recently
the interest of physicists triggered the investigation of many different networks:
from the network of scientific collaborations (Barabási et al. 2002; Newman 2001a,
2001b, 2004) to that of sexual contacts (Liljeros et al. 2001) and the ongoing so-
cial relationships (Holme 2003), from email exchange networks (Ebel et al. 2002;
Newman et al. 2002; Eckmann et al. 2004) to the dating community network
(Holme et al. 2004) and to mobile communication networks (Onnela et al. 2007;
Palla et al. 2007), just to quote a few examples. From this experimental work a set
of features characterizing social networks has been identified.

It has been shown (Newman and Park 2003) how social networks differ substan-
tially from other types of networks, namely technological or biological. The origin
of the difference is twofold. On the one hand they exhibit a positive correlation be-
tween adjacent vertices (also called assortativity), while most non-social networks
(Pastor-Satorras et al. 2001; Newman 2003b) are disassortative. A network is said to
show assortative mixing if nodes with many connections tend to be linked to other
nodes with many connections. On the other hand, social networks show clustering
coefficients well above those of the corresponding random models. These results
opened the way to a modeling activity aimed at reproducing in an artificial and con-
trolled way the same features observed in real social networks (Jin et al. 2001). We
cannot review here all these attempts, but we have quoted some relevant references
throughout the review when discussing specific modeling schemes. It is important
to keep in mind that future investigations on social dynamics will be forced to take
into account, in a more stringent way, structural and dynamic properties of real so-
cial networks (Roehner 2007).

When applying models of social dynamics on specific topologies, several non-
trivial effects may arise, potentially leading to important biases for the dynamics.
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For instance, on a generic uncorrelated network with degree distribution P(k), the
degree of the neighbor of a node of degree k is distributed as kP (k)/〈k〉 (Pastor-
Satorras and Vespignani 2004). This expression can be easily obtained by consid-
ering that the required probability distribution for a node neighbor of a given node
with degree k is the conditional probability P(k|k′), i.e., the probability that a node
of degree k′ is connected to a node of degree k, for which it holds

∑
k P (k|k′) = 1.

The expression for P(k|k′) for an uncorrelated network, can be easily understood if
one thinks that the probability that a given node is connected to a node of degree k

is proportional to the density of these nodes, P(k), times the number k of emanated
edges. As a consequence, the neighbor of a randomly selected node has an expected
degree larger than the node itself. For a generic correlated network, the expression
for P(k|k′) is given by P(k|k′) = (〈k〉P(k, k′))/(k′P(k′)), where P(k, k′)) is the
joint probability of having an edge linking two nodes with degrees k and k′. There-
fore, on strongly heterogeneous networks, for binary asymmetric interaction rules,
i.e., when the two selected agents have different roles, the dynamics could be af-
fected by the order in which the interaction partners are selected (this is the case, for
example, in the Naming Game, as seen in Chap. 15).

2.3 Dynamical Systems Approach

One of the early contributions of physicists to the study of social systems has been
the introduction of methods and tools coming from the theory of dynamical systems
and non-linear dynamics. This development goes by the name sociodynamics (Wei-
dlich 2002). The term sociodynamics has been introduced to refer to a systematic
approach to mathematical modeling in the framework of social sciences.

Sociodynamics is a branch of synergetics (Haken 1978) devoted to social sys-
tems, featuring a few important differences. In synergetics, one typically starts with
a large set of microscopic equations for the elementary components and performs
a reduction of the degrees of freedom. This is not the case for social systems, for
which no equations at the microscopic level are available. In this case one has to
identify relevant macro-variables and construct equations directly for them based
on reasonable and realistic social hypotheses, i.e., informed by social driving forces.
The typical procedure consists of defining probabilistic transition rates per unit of
time for the jumps from different configurations of the system corresponding to
different values of the macro-variables. The transition rates are used as building
blocks for setting up the equation of motion for the probabilistic evolution of the set
of macro-variables. The central evolution equation in sociodynamics is the master
equation, a phenomenological first-order differential equation describing the time
evolution of the probability P(m, t) for a system to occupy each one of a discrete
set of states, defined through the set of macro-variables m:

dP (m, t)

dt
=

∑

m′

[
Wm′,mP(m′, t) − Wm,m′P(m, t)

]
, (2)
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where Wm,m′ represents the transition rate from the state m to the state m′. The
master equation is a gain-loss equation for the probability of each state m. The first
term is the gain due to transitions from other states m′, and the second term is the
loss due to transitions into other states m′.

While it is relatively easy to write down a master equation, it is quite another
matter to solve it. It is usually highly non-linear and some clever simplifications are
often needed to extract a solution. In general, only numerical solutions are available.
Moreover, typically the master equation contains too much information in compar-
ison to available empirical data. For all these reasons it is highly desirable to derive
from the master equation simpler equations of motion for simpler variables. One
straightforward possibility is to consider the equations of motion for the average
values of the macro-variables m, defined as

mk(t) =
∑

m

mkP (m, t). (3)

The exact expression for the equations of motion for mk(t) does not lead to simpli-
fications because one should already know the full probability distribution P(m, t).
On the other hand, under the assumption that the distribution remains unimodal and
sharply peaked for the period of time under consideration, one has

P(m, t) � P
(
m(t)

)
, (4)

yielding the approximate equations of motions for mk(t), which are now a closed
system of coupled differential equations. We refer to Weidlich (2002) for a complete
derivation of these equations as well as for the discussion of several applications.
The approach has also been applied to model behavioral changes (Helbing 1993a,
1993b, 1994).

2.4 Agent-Based Modeling

Computer simulations play an important role in the study of social dynamics since
they parallel more traditional approaches of theoretical physics aimed at describing
a system in terms of a set of equations to be later solved numerically and/or, when-
ever possible, analytically. One of the most successful methodologies used in social
dynamics is agent-based modeling. The idea is to construct the computational de-
vices (known as agents with some properties) and then simulate them in parallel to
model the real phenomena. The goal is to address the problem of the emergence
from the lower (micro) level of the social system to the higher (macro) level. The
origin of agent-based modeling can be traced back to the 1940s, to the introduction
by Von Neumann and Ulam of the notion of cellular automaton (Neumann 1966;
Ulam 1960), e.g., a machine composed of a collection of cells on a grid. Each cell
can be found in a discrete set of states and its update occurs on discrete time steps
according to the state of the neighboring cells. A well-known example is Conway’s



5 Theoretical Tools in Modeling Communication and Language Dynamics 77

Game of Life, defined in terms of simple rules in a virtual world shaped as a 2-
dimensional checkerboard. This kind of algorithms became very popular in popula-
tion biology (Matsuda et al. 1992).

The notion of agent has been very important in the development of the concept
of Artificial Intelligence (McCarthy 1959; Minsky 1961) which traditionally fo-
cuses on the individual and on rule-based paradigms inspired by psychology. In this
framework, the term actors was used to indicate interactive objects characterized
by a certain number of internal states, acting in parallel and exchanging messages
(Hewitt 1970). In computer science, the notion of actor turned into that of agent and
more emphasis has been put on the interaction level instead of autonomous actions.

Agent-based models were primarily used for social systems by Craig Reynolds,
who tried to model the reality of living biological agents, known as artificial life, a
term coined in Langton (1996). Reynolds introduced the notion of individual-based
models in which one investigates the global consequences of local interactions of
members of a population (e.g., plants and animals in ecosystems, vehicles in traf-
fic, people in crowds, or autonomous characters in animation and games). In these
models, individual agents (possibly heterogeneous) interact in a given environment
according to procedural rules tuned by characteristic parameters. One thus focuses
on the features of each individual instead of looking at some global quantity av-
eraged over the whole population. In Epstein and Axtell (1996), by focusing on
a bottom-up approach, the first large-scale agent model, the Sugarscape, has been
introduced to simulate and explore the role of social phenomena such as seasonal
migrations, pollution, sexual reproduction, combat, trade and transmission of dis-
ease and culture.

The Artificial Life community has been the first in developing agent-based mod-
els (Meyer and Wilson 1990; Maes 1991; Varela and Bourgine 1992; Steels 1995;
Weiss 1999), but since then, agent-based simulations have become an important
tool in other scientific fields and, in particular, in the study of social systems
(Conte et al. 1997; Wooldridge 2002; Macy and Willer 2002; Schweitzer 2003;
Axelrod 2006). In this context it is worth mentioning the concept of Brownian agent
(Schweitzer 2003) which generalizes that of Brownian particles from statistical me-
chanics. A Brownian agent is an active particle which possesses internal states, can
store energy and information, and interacts with other agents through the environ-
ment. Again, the emphasis is on the parsimony in the agent definition as well as
on the interactions, rather than on the autonomous actions. Agents interact either
directly or indirectly through the external environment, which provides feedback
about the activities of the other agents. Direct interactions are typically local in time
and ruled by the underlying topology of the interaction network (see also Sect. 2.2).
Populations can be homogeneous (i.e., all agents being identical) or heterogeneous.
Differently from physical systems, the interactions are usually asymmetrical since
the role of the interacting agents can be different both for the actions performed
and for the rules to change their internal states. Agent-based simulations have now
acquired a central role in modeling complex systems and a huge amount if litera-
ture has been rapidly developing in the last few years about the internal structure
of the agents, their activities, and the multi-agent features. An exhaustive discus-
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sion of agent-based models is beyond the scope of the present review, but we re-
fer to Schweitzer (2003) where the role of active particles is thoroughly discussed
with many examples of applications, ranging from structure formation in biologi-
cal systems and pedestrian traffic to the simulation of urban aggregation or opinion
formation processes.

It is worth mentioning that in this section we mainly discussed simple agent-
based models in which the role of the embodiment has been explicitly neglected. In
these models the physical interaction of the agents with the environment is highly
simplified and at the same time the signals changed with the environment are defined
in an abstract way more that in a grounded way, through the sensory motor endow-
ment of the agent. A more realistic use of agent-based schemes will be illustrated in
Parts II and III of this book.

3 Conclusions

In this chapter we have illustrated the main statistical tools physicists and mathe-
maticians can bring as a support for the longstanding problem concerning the emer-
gence and evolution of language. We introduced, in particular, the main tools and
methods proposed so far for the description of the early stages in the emergence of
language: e.g., the formation of a shared lexicon and the establishment of a com-
mon set of linguistic categories. Though promising, these studies did not yet face
the hardest problems in linguistics, namely the emergence of syntax and grammar.
Currently, new studies are ongoing focusing on the emergence of higher forms of
agreement, e.g., compositionality, syntactic, or grammatical structures. It is clear
how it would be highly important to cast a theoretical framework where all these
problems could be defined, formalized, and solved. In this perspective a crucial
factor will be most likely represented by the availability of large sets of empirical
quantitative data. The joint interdisciplinary activity should then include systematic
campaigns of data gathering as well as the devising of new experimental setups for a
continuous monitoring of linguistic features. From this point of view, the Web may
be of great help, both as a platform to perform controlled online social experiments,
and as a repository of empirical data on large-scale phenomena. It is only in this way
that a virtuous cycle involving data collection, data analysis, modeling, and predic-
tions could be triggered, giving rise to an ever more rigorous and focused approach
to language.

It is worth stressing how the contribution physicists could give should not be
considered in any way as alternative to more traditional approaches. We rather think
that it would be crucial to foster the interactions across the different disciplines
cooperating with linguistics, by promoting scientific activities with concrete mutual
exchanges among all the interested scientists. This would help both in identifying
the problems and sharpening the focus, as well as in devising the most suitable
theoretical concepts and tools to approach the research.
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