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We study the problem of detecting social communities when the social graph is not available but instead we
have access to a log of user activity, that is, a dataset of tuples (u, i, t) recording the fact that user u “adopted”
item i at time t. We propose a stochastic framework that assumes that the adoption of items is governed by an
underlying diffusion process over the unobserved social network and that such a diffusion model is based on
community-level influence. That is, we aim at modeling communities through the lenses of social contagion.
By fitting the model parameters to the user activity log, we learn the community membership and the level of
influence of each user in each community. The general framework is instantiated with two different diffusion
models, one with discrete time and one with continuous time, and we show that the computational complexity
of both approaches is linear in the number of users and in the size of the propagation log. Experiments on
synthetic data with planted community structure show that our methods outperform non-trivial baselines.
The effectiveness of the proposed techniques is further validated on real-word data, on which our methods
are able to detect high-quality communities.
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1. INTRODUCTION

Detecting close-knit communities of like-minded people in on-line social networks is
an important mining task with plenty of applications. Knowing groups of users with
similar interests and a short distance on the social graph allows the analyst to develop
more personalized user experiences and thus better web and mobile applications. For
companies advertising and selling products through the Internet, the community struc-
ture of the social network provides invaluable knowledge. If a user responded positively
to a certain ad, campaign, or product offer, then one might want to target other users
in the same community: (i) By homophily, one can expect similar users to be more
interested in the same product than random users, and (ii) if more users in the same
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community adopt the same product, then this might eventually create a word-of-mouth
buzz, triggering more adoptions in the same community.

While the literature on community detection is wide, the real-world applications
deployed so far are rather limited, often regarding just simple data analysis for social
sciences. This is due to a fundamental observation that has been largely overlooked in
the literature: The real-world applications that would benefit more from knowing the
community structure of a social network actually do not have access to the network.

It is a matter of fact that the social network platforms are owned by a third party, such
as Facebook or Twitter, who have realized that their proprietary social graph is an asset
of inestimable value.1 Thus they keep it secret for the sake of commercial competitive
advantage, as well as due to privacy legislation. Take Facebook as an example: Business
owners can set up a Facebook Page and create display ads or promoted posts to reach
users,2 but they are not allowed3 to reconstruct the social graph and thus implement
targeted ads campaign based on the knowledge of the communities. Another example
is Twitter, which sells its Firehose (the complete stream of tweets is approximately
half a billion per day) to other companies4: Regardless, the business partnership of the
social graph is not disclosed, and actually, its reconstruction for commercial purposes
is explicitly forbidden by contract.

In this article, we tackle the ambitious problem of inferring the community structure
when the social graph is not available and without attempting to reconstruct it. A
first step towards this goal is to analyze the alternative dynamics and data that we
can exploit. A company advertising or developing applications over an on-line social
network owns the log of user activity that it produces. In general, we might think of
the activity log D as a set of tuples (u, i, t) that records the timestamp at which the user
u “acted on” or “adopted” the item i: For instance, user u bought song i, user u clicked
on ad i, user u liked photo i.

The key idea at the basis of this work is to exploit the phenomenon of social contagion
to detect communities by analyzing, exclusively, the activity log D. The basic assump-
tions are that (i) information can spread only by exploiting the social connections
among users and that (ii) the network has a community structure, where communities
are densely connected internally and loosely connected with other communities. As a
consequence of these two assumptions, social contagion acts mainly locally, inside each
community. Thus, if we see a group of users acting on item i in a short time frame, and
we observe this occurring on various different items, then we can infer that these users
are connected in some social network and that they communicate and can influence
each other.

The following analogy might be appropriate. We might think of the unobserved
social network as an underground network of channels and caves that we want to
map. By letting some fluid enter into the network and monitoring how it flows, we can
understand where there are caves in which the fluid can flow easily and accumulate
(social communities) and where instead there are channels that allow flow from one
cave to another and how easily the flow moves through each channel.

It is worth noting that the unobserved social network is not necessarily unique and
clearly defined: Users can communicate through different media, for example, e-mail,
telephone, Facebook, Twitter, Skype, or WhatsApp (just to mention a few), or they can
even communicate in the real world, for example, while drinking a beer together. This
does not make any difference for our setting: We just observe the adoptions and their

1http://techcrunch.com/2013/01/24/my-precious-social-graph/.
2https://www.facebook.com/business.
3https://developers.facebook.com/policy.
4http://gigaom.com/2012/11/29/as-the-firehose-matures-twitter-tightens-grip-on-valuable-asset/.
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timing. Being network oblivious, our framework also solves the problem of detecting
communities over multiple networks.

Finally, our method not only is aimed at detecting communities by exploiting social
influence evidence: As a by-product, it also defines the level of influence of each user
in each community. This allows us to identify for each community the “key” users, that
is, the leaders who are most likely to influence the rest of the community to adopt a
certain item. Those are the best users to target in a viral marketing campaign.

1.1. The Proposed Method

One possible approach to solve the network-oblivious community detection problem
could be to first use the log D to infer the overall structure of the network and then
apply some standard community detection techniques over the reconstructed social
network. However, this approach has several drawbacks. First, methods for network
reconstruction [Gomez Rodriguez et al. 2010, 2011] are inherently quadratic in the
number of nodes, and the proposed inference procedure, which is based on convex
optimization, is not easily scalable. Second, the reconstruction of the network might be
explicitly forbidden by contract (as discussed above for Twitter and Facebook). Third,
if the community detection is the ultimate goal then, as we show in our experiments
in Section 6, it is more effective to go directly for it without passing through network
reconstruction.

In this work, we propose a general framework for directly detecting communities in a
network-oblivious setting without attempting to reconstruct the network. In particular,
our proposal assumes that item adoptions are governed by an underlying stochastic
diffusion process over the unobserved social network and that such a diffusion model
is based on community-level influence. By fitting the model parameters to the user
activity log D, we learn the community membership and the influence level of each
user in each community.

The general framework can be instantiated with different choices of diffusion models.
In this article, we propose two models. First, we extend to the community level the
classic (discrete-time) Independent Cascade model [Kempe et al. 2003]. The key idea is
to assume that each user exerts the same degree of influence over a whole community.
Then, we provide a finer-grained modeling by directly focusing on activation times.
Here we assume that each user induces a fixed delay on the activation times of social
peers within the same community.

1.2. Summary of Contributions and Roadmap

The main contributions of our work can be summarized as follows:

—We introduce the problem of network-oblivious community detection, exploiting user
activity information. Despite the wide literature on the subjects of community detec-
tion and influence in social networks (briefly reviewed in Section 2), to the best of our
knowledge we are the first ones to study community detection without the network.

—We define a stochastic framework for modeling users membership in communities
based on community-level social influence. We devise an expectation maximization
(EM) learning algorithm that embeds a penalized likelihood with negative Dirichlet-
type prior. This enables a community annihilation mechanism, allowing the auto-
matic detection of the best fitting number of communities (Section 3).

—We instantiate the general framework by considering two different diffusion models:
a discrete-time community-level independent cascade model (Section 4) and a model
based on the time delay between adoptions (Section 5). Notably, the computational
complexity of both approaches is linear in the number of users and in the size of the
propagation log. The inference phase is based on the above mentioned EM scheme for
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learning the model parameters. By exploiting the properties of the underlying prop-
agation models, each iteration of the learning procedure can be efficiently computed
in at most two scans of the propagation log.

—We run extensive experimentation on synthetic data with planted community struc-
ture (Section 6). Our results show that our methods outperform three non-trivial
baselines. Experiments on a real-world Twitter dataset confirm the high quality of
the discovered communities.

In Section 7 we conclude the article and discuss possible extensions. A six-page
preliminary version of this work was presented in Barbieri et al. [2013b].

2. RELATED WORK

In this section, we briefly review related prior work. First, we discuss data-mining mod-
els in the area of social influence, and then we discuss a few articles at the intersection
of social contagion and community detection.

2.1. Social Contagion

The term social contagion refers to the spread of new practices, beliefs, technologies,
and products through a population, driven by social influence. It is a very central theme
in social sciences, and recently it has attracted a lot of interest in the data-mining
community [Bonchi 2011]. Fueled by the seminal work by Domingos and Richardson
[2001] and Kempe et al. [2003], most of the attention has been devoted to exploiting
social influence for “word-of-mouth” driven viral marketing applications.

Given a social network, where each arc (u, v) is associated with a weight (or probabil-
ity) pu,v representing the strength of influence that u exerts over v, the problem is that
of selecting the set of initial users that are more likely to influence the largest number
of users in the social network, according to an assumed underlying propagation model.
In this context, most of the effort has been devoted to develop efficient and scalable
algorithms [Kimura and Saito 2006; Leskovec et al. 2007b; Chen et al. 2010; Goyal
et al. 2011].

Other researchers have considered the social network and the log of past user activity
jointly and studied important problems such as learning the parameters of the propaga-
tion model, that is, the strength of influence along each arc [Saito et al. 2008; Goyal et al.
2010] or how to distinguishing real social influence from “homophily” [Anagnostopoulos
et al. 2008; Crandall et al. 2008; La Fond and Neville 2010]. Finally, a vast literature
exists on the analysis of social influence in specific domains: for instance, studying
person-to-person recommendation for purchasing books and videos [Leskovec et al.
2006, 2007a], telecommunications services [Shawndra et al. 2006], or studying infor-
mation cascades driven by social influence in Twitter [Bakshy et al. 2011; Romero et al.
2011]. Weng et al. [2013] studies the role of information diffusion in the evolution of so-
cial networks: Their experimental results show that, as time progresses, the dynamics
of information flow become an important component for the growth of the network.

More related to our work is the research by Gomez Rodriguez et al. [2010, 2011].
In this line of research, the social network is not given in input, and the problem is
how to reconstruct the unobserved network starting from the log of users activity. The
problem of network reconstruction is addressed by assuming that infections follow a
continuous-time independent cascade model: Each node in a cascade is infected by
at most one already-infected node, and thus a propagation is a directed tree. In NetInf
[Gomez Rodriguez et al. 2010], the network is inferred by assuming that the probability
of propagation between any pair of nodes is decreasing in the difference (always positive
by assumption) of their infection times. In NetRate [Gomez Rodriguez et al. 2011], if
the node u succeeds in activating v, then the contagion of the latter happens after
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an incubation time sampled from a chosen distribution, which defines the conditional
likelihood of transmission between each pair of nodes and actually depends on the
difference of their activation times.

According to this propagation model, the likelihood of a propagation cascade can be
formulated by applying standard survival analysis [Lee and Wang 2003] in terms of sur-
vival (which models the probability that a node survives uninfected until a time T ) and
hazard fuctions (which models instantaneous infections). Authors study three differ-
ent underlying distribution functions, namely the exponential, Reileigh, and power-law,
and show that the likelihood of the observed data is convex and the trasmission rate
parameters can hence be estimated by standard convex optimization procedures. In
our experiments in Section 6, we use as a baseline NetRate to reconstruct the network,
followed by Metis [Karypis and Kumar 1999] to partition the network.

Recent proposals have also focused on alternative ways of representing informa-
tion diffusion interactions between nodes, mainly using latent-dimensional embedding
techniques. Bourigault et al. [2014] proposes a framework based on a heat diffusion
process that projects each node into a latent space where the proximity between a
pair of nodes reflects the proximity of their activations times in the observed cas-
cades. Similarly, Wang et al. [2015] introduces a factorization technique that associates
two low-dimensional vectors to each node, representing influence and susceptibility,
respectively.

2.2. Communities and Social Contagion

The study of social contagion is intrinsically connected to the problem of understanding
the community structure of networks. In fact, individuals tend to adopt the behavior
of their social peers, so social contagion happens first locally, within close-knit commu-
nities, and spreads virally only when it is able cross the boundaries of these densely
connected clusters of people. Regardless of the vast literature on community detection
algorithms (see Fortunato [2010] for a survey), there has not been much research at
the intersection of community detection and social contagion.

Wang et al. [2010] studies the problem of finding the top-k influential users in mobile
social networks. The authors propose to first detect communities and then assume that
the influence of a user is limited to his or her community. Therefore they propose an
algorithm based on label propagation, where the propagation follows the independent
cascade model [Kempe et al. 2003]. A similar approach is also taken in Chen et al.
[2014]: The proposed algorithm works in two phases, where the first phase discovers
the community structure of the network, and the second phase uses the information of
communities detect the set of possible seed influencers.

In these works, communities are only a way to reduce the search space of the problem
of finding influential users, not the goal. Moreover, the setting differs considerably from
ours: In their framework, both the social network and the influence strength are given
in input, while in our case neither of the two is known.

Barbieri et al. [2013a] studies the following problem: Given both the social graph and
the log of user activity as input, the goal is to detect communities that “explain” well the
two pieces of input. In simpler terms, the idea is to do better community detection using
the additional information contained in the activity log. Towards this goal, Barbieri
et al. propose the Community-Cascade Network (CCN) model, a stochastic mixture
membership generative model that can fit, at the same time, the social graph and the
log of user activity.

Mehmood et al. [2013] introduces a model for analyzing information propagation
and social influence at the granularity of communities. The analysis of the community-
level influence propagation network on a real-world dataset shows that the network is
almost acyclic.
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Our work also collocates itself in the intersection of community detection and social
contagion, but it differs from the proposals of Barbieri et al. [2013a] and Mehmood
et al. [2013], as we tackle the problem of community detection without the network.

3. GENERAL FRAMEWORK

In this section, we introduce our general stochastic framework, which we will instan-
tiate with different diffusion models in Sections 4 and 5.

3.1. Preliminaries

We are given a log of past user activity D defined as a relation (User, Item, Time) where
each tuple (u, i, t) represents the fact that the node u adopted the item i at the time t.
We let V denote the set of all users, that is, the projection of D over the first column,
and I denote the universe of items, that is, the projection of D on the second column,
and we assume the time is an integer t ∈ [0, T ). We also use Di to denote the overall
activity on item i, that is, the selection of the tuples of D where Item = i. We call it
the propagation trace of i. The projection of Di on the first column is denoted as Ci. We
assume |D| = L, |V | = M, and |I| = N. Furthermore, we denote |Ci| = |Di| = Li as the
size of the propagation trace of i and Nu = |{i|u ∈ Ci}| as the number of items adopted
by user u.

Let tu(i) represent the adoption time of the user u for the trace Di; with tu(i) = ∞ if
u does not adopt i by time T . We denote the time delay between the adoption of two
users u, v on the item i as �u,v(i) = tu(i) − tv(i). We also define �u(i) = T − tu(i). When
i is clear from the context, we simply write �u,v and �u. Finally, let Ci,t denote the set
of users active on the trace i by time t, i.e., Ci,t = {u ∈ V : tu(i) < t}. For notational
convenience, we shall also denote Ci,tu(i) as Ci,u, for each u ∈ Ci. Finally, we denote by
u ≺i v the fact that both u and v are in Ci, and tu(i) ≤ tv(i). Analogously, u �i v holds
when both u and v are in Ci, and tu(i) > tv(i) (hence v is a possible influencer for u’s
adoption). With an abuse of notation, we denote u �i v when either u = v or u ≺i v.

3.2. Framework Overview

Given only a log D of users’ activities, our goal is to detect communities in an unobserved
network whose set of nodes correspond to the set of users V of D. By communities we
mean—as usual in the literature—clusters of nodes of a social network that exhibit
high internal and low external link density. For ease of presentation, we talk about
communities as a complete partitioning of V , that is, communities are disjoint. How-
ever, it is worth noting that, being stochastic, our method produces for each user the
level of membership in each community: Therefore a soft assignment to multiple over-
lapping communities is always possible. While detecting communities, we also aim to
learn for each community which are the most influential users, that is, those users who
are most likely to influence the rest of the community to adopt a certain item i.

One possible approach is to forget about the existence of an underlying unobserved
social network. Instead, we just tackle the problem with a standard clustering ap-
proach: V is the set of objects to be clustered, and the actions of each user in V (which
item i is adopted and at which time t) is its description. One main drawback of this ap-
proach is that it provides only clusters of users and no information about the influence
of users in their respective cluster.

Another possible approach is to focus on social influence to infer the social network
from the user activity log D, following the framework of Gomez Rodriguez et al. [2010,
2011]. Then we can apply some standard community detection algorithm to the re-
sulting “reconstructed” network. As previously discussed, this approach has several
drawbacks, the main one being the runtime quadratic in the size of V .
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We can consider these two approaches as the two opposite extremes of the spec-
trum5: one totally ignoring the existence of the network effect and the other one explic-
itly reconstructing the network. Our proposal collocates between these two extremes:
Although it does not attempt a direct reconstruction of the network, it assumes that in-
formation spreads over social connections. Thus the assumption behind our framework
is that the unobserved network naturally shapes the process of information diffusion.

A high-level overview of our framework is as follows:

—We assume the existence of an unobserved social network having a modular structure
(as typical of social networks). This means that communities exist, and they are
densely connected internally and loosely connected with other communities.

—We assume that the process of the adoption of items is governed by an underlying
stochastic diffusion process over the unobserved social network. In particular, the
diffusion model is based on community-level influence.

—Each user is associated with a level of membership and a level of influence in each
community. These are the parameters of the diffusion model that we need to learn.
The adoption of an item i by a user u depends on the level of adoption of the item in
the community of u or, in other words, by the influence exerted by the other members
of the community on u for adopting i.

—By fitting the model parameters to the user activity log D, we learn the community
membership and influence levels.

This general framework can be instantiated by using different stochastic
(community-level) diffusion models, leading to different community detection methods.
In this work we study two such models in Section 4 and 5, respectively. We conclude
this section by presenting the EM-like algorithm for fitting the model parameters to
the user activity log.

3.3. Modeling Maximum Likelihood

We base our community detection algorithm on a probabilistic framework where we
assume the existence of a latent association of each user with a given community, which
governs both her/his social ties and her/his attitude towards item adoptions. Social ties
are not observed in our framework. However, they are dense within the same commu-
nity. Thus, by modeling the (observed) propagation behavior, we can still infer such
ties as well as the underlying latent community. We resort to mixture modeling here,
which has been already proven as a flexible and powerful framework for overlapping
community detection [Newman and Leicht 2007; Ren et al. 2009; Davis and Carley
2008]. However, our model parameterizes the probability of actions propagating due to
influence, whereas traditional approaches where the network structure is known focus
on modeling the probability of edges. According to such an approach, we are still able
to detect communities, and, for each community, we can also detect the contribution of
each node to the propagations.

We assume that each propagation trace is independent from the others, and we adopt
a maximum a posteriori perspective. That is, we hypothesize that action probabilities
adhere to a mathematical model governed by a set of parameters �. The likelihood of
the data given the model parameters � can hence be expressed as

L(�; D) =
∏
i∈I

P(Di|�),

where P(Di|�) represents the likelihood to observe the propagation trace behavior
relative to i in D. This can be deemed relative to the contribution of each user in it. In

5In our experimental assessment (Section 6), we compare our proposal against these alternative approaches.
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practice, we can devise a Markov chain of probabilities relative to the specific adoptions
(or non-adoptions),

P(Di|�) =
∏
u∈V

P(au,i|Du,i,�),

where au,i is the action (u, i, tu(i)), and Du,i is the sequence of all actions in Di that occur
prior to tu(i). In principle, there is no independence assumption among actions, since
an action occurring at time t may depend on other actions that occurred on the same
item prior to t.

The corresponding learning problem is finding the optimal �̂ that maximizes L(�; D).
Following the standard mixture modeling approach [Dempster et al. 1977], we assume
that the adoptions of each user can be explained by the community he/she belongs to.
That is, we assume that a hidden binary variable zu,k denotes the membership of user
u to community k, with the constraint

∑K
k=1 zu,k = 1. Thus, � can be partitioned into

{π1, . . . , πK,�1, . . . , �K}, where �k represents the parameter set relative to community
k, and πk = P(zu,k = 1) is the probability that a user is associated with community k.
We can rewrite the likelihood as

L(�; D) =
∏
i∈I

∏
u

K∑
k=1

P(au,i|Du,i,�k)πk,

which can be optimized by resorting to the traditional EM algorithm. We rewrite the
complete likelihood as

P(D, Z,�) = P(D|Z,�) · P(Z|�) · P(�), (1)

where

P(D|Z,�) =
∏
u∈V

K∏
k=1

P(u|�k)zu,k

P(u|�k) =
∏

i

P(au,i|Du,i,�k)

P(Z|�) =
∏
u∈V

K∏
k=1

π
zu,k
k ,

and P(�) represents the prior relative to the parameter set �. Inspired by Figueiredo
and Jain [2002], we choose to model the latter as

P(�) ∝
K∏

k=1

π
− 1

2

√|�k|
k ,

with the interpretation that, for fixed K, the parameters πk allow an “improper”
Dirichlet-type prior. This enables a formulation of EM algorithm that allows the auto-
matic detection of the optimal number K of communities. By standard manipulation
of Equation (1), the Complete-Data Expectation Likelihood [Dempster et al. 1977] is
given by

Q(�; �′) =E[log P(D, Z,�)|D; �′]

∝
∑
u∈V

K∑
k=1

γu,k{log P(u|�k) + log πk} −
K∑

k=1

Nk

2
log πk,

(2)
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where Nk = √|�k| and γu,k ≡ P(zu,k = 1|u,�′). Optimizing Q(�; �′) with respect to πk
under the constraints

∑
k πk = 1, 0 ≤ πk ≤ 1 yields:

πk = max
{
0,

∑
u∈V γu,k − Nk/2

}
∑K

k=1 max
{
0,

∑
u∈V γu,k − Nk/2

} . (3)

Here, the proposed prior allows an adjustment to the estimation of the πk parameters
which enables “annihilation”: A community not supported by a sufficient number of
users is removed. Thus, we can start with an arbitrarily large initial number of com-
munities and then infer the final number K by letting some of the mixing probabilities
πk be zero.

ALGORITHM 1: Learning Algorithm
Input: Propagation log D, and Kmax ∈ N

+.
Output: Optimal K value; the set of all parameters, �.

1 Arbitrarily initialize �(0) // Initialization of model parameters
2 K ← Kmax;
3 repeat
4 forall the k such that πk > 0 do
5 forall the u do

6 compute γu,k = P(u|�(t−1)
k )πk∑k

k=1 P(u|�(t−1)
k )πk

7 end
8 end
9 forall the k such that πk > 0 do

10 compute πk = max{0,
∑

u γu,k−Nk/2}∑k
h=1 max{0,

∑
u γu,h−Nh/2}

11 Normalize {π1, . . . , πK};
12 if πk > 0 then
13 compute additional model components;
14 compute �(t)

k = arg maxk Q(�; �(t−1));
15 end
16 else
17 K ← K − 1;
18 end
19 end
20

E
-s

te
p

M
-s

te
p

21 until Convergence;

The general EM scheme is shown in Algorithm 1. As discussed in Figueiredo and Jain
[2002], a further advantage of the scheme is its robustness to random initialization:
By starting with an arbitrarily large number of components, we can avoid the pitfalls
of local maxima, since the whole parameter space is likely to be covered. As a side
note, the modeling of the prior P(�) is a major difference w.r.t. Figueiredo and Jain
[2002]: When |�k| is of the same order of magnitude as |V |, the original formulation
of the prior in Figueiredo and Jain [2002] would produce an underestimation of the
number of communities. Furthermore, reducing the weight of |�k| in the computation
of πk allows us to reformulate the algorithm without optimizing the components in
sequence, which would require a prohibitive computational cost for large D.

The above modeling is a general framework that is parametric to the compo-
nent P(u|�k). In turn, the latter depends on the way we model the probability
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P(au,i|Du,i,�k) for each adoption au,i ≡ (u, i, t). We explore two different ways of model-
ing P(au,i|Du,i,�k), which focus on two different perspectives.

(1) The probability that u adopts i is the result of a Bernoullian process on i, that is,
P(au,i|Du,i,�k) ≡ P(i|u, t, Du,i,�k), and time proceeds in discrete steps.

(2) The final model does not consider whether a user adopts i but when the adoption
happens, that is, P(au,i|Du,i,�k) ≡ P(t|i, u, Du,i,�k).

We next explore each strategy in turn. We consider a binary and progressive activation
process: At a given timestamp, each user is either active or inactive, and active users
cannot become inactive again.

4. COMMUNITY-LEVEL INDEPENDENT CASCADE MODEL

In the first alternative, we assume a Bernoullian model for users’ adoptions of items.
As a result, the likelihood P(u|�k) can be specified over the observed binary data Yi,u,
where Yi,u = 1 if u ∈ Ci, and Yi,u = 0 otherwise.

When the social relationships are explicit, it is possible to define a propagation
model that describes how adoptions spread across the network [Kempe et al. 2003] and
to model information propagation and community structure suitably [Barbieri et al.
2013a]. In these models, a user’s tendency to become active increases monotonically as
more of its social peers become active. We next adapt this concept to a network-oblivious
situation, where we assume that the user’s tendency to become active depends on the
influence exerted within the community of membership.

The Community-Independent Cascade (C-IC) model draws from the Independent
Cascade model (IC) [Kempe et al. 2003] and models the idea that each user exerts
the same degree influence over members of each community. Time unfolds in discrete
timestamps. As in IC, when a user v becomes active, say, at time t, it is considered con-
tagious and has a single chance of influencing each inactive neighbor u, independently
of the history thus far. The IC model specifies pairwise influence probabilities pv,u,
which express the likelihood of success for v’s attempt in activating her/his neighbor u.
Here, since the network information is not available, we assume that v exerts her/his
influence “globally,” with a strength pk

v ∈ [0, 1] which depends on the community k of
the targeted node. The idea is that the community-level influence of each user v is
higher in the community she/he belongs to. According to this principle, we assume that
information mainly propagate locally and spread across communities thanks to the
presence of users who exhibit high degree of “external” influence.

Following Mathioudakis et al. [2011], we adopt a delay threshold � to define influ-
encers. Specifically, we define F+

i,u as the set of users who potentially influenced u in
the adoption of i:

F+
i,u = {v ∈ V |0 ≤ tu(i) − tv(i) ≤ �}.

The set F−
i,u of users who definitely failed in influencing u over i is defined similarly:

F−
i,u = {v ∈ V |tu(i) − tv(i) > �}.

Then, we can specify P(u|�k) as

P(u|�k) =
∏

i

P+(i|u,�k)Yi,u · P−(i|u,�k), (4)

where P+(i|u,�k) represents the probability that some of the potential influencers
activated u and P−(i|u,�k) the probability that none of the “out-of-react” influencers
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succeeded:

P+(i|u,�k) = 1 −
∏

v∈F+
i,u

(
1 − pk

v

)
P−(i|u,�k) =

∏
v∈F−

i,u

(
1 − pk

v

)
.

When Yi,u = 0, the set F+
i,u is empty, thus neutralizing P+(i|u,�k). As a consequence, we

can omit the exponent in the first component and specify the complete-data likelihood
as

P(D|Z,�) =
∏
i,u,k

⎡
⎣1 −

∏
v∈F+

i,u

(
1 − pk

v

)⎤⎦
zu,k

·
⎡
⎣ ∏

v∈F−
i,u

(
1 − pk

v

)⎤⎦
zu,k

.

4.1. Learning Influence Weights

The analytical optimization of Q(�; �(t−1)) is still difficult. We resort to the explicit
modeling of the influencers as hidden data to simplify the optimization procedure.
That is, let wi,u,v be a binary variable such that wi,u,v = 1 if v triggered the adoption of
the item i by u, and let W denote the set of all possible wi,u,v such that v ∈ F+

i,u. Then,
we can rewrite the complete-data likelihood relative to W as

P(D, Z, W,�) = P(D, W|�, Z) · P(Z|�) · P(�),

where

P(D,W|�, Z) =
∏
i,u,k

∏
v∈F−

i,u

(
1 − pk

v

)zu,k
∏
i,u,k

∏
v∈F+

i,u

(
pk

v

)wi,u,v ·zu,k (
1 − pk

v

)(1−wi,u,v )·zu,k
.

As a consequence, the contribution to Q(�; �(t−1)) in the second row of Equation (2)
can be rewritten as

∑
u

∑
k

γu,k

⎛
⎝log πk +

∑
i

∑
v∈F−

i,u

log
(
1 − pk

v

)

+
∑

i

∑
v∈F+

i,u

ηi,u,v,k log pk
v + (1 − ηi,u,v,k) log

(
1 − pk

k

)⎞⎠ ,

where ηi,u,v,k is the “responsibility” of the user v in triggering u’s adoption in the context
of the community k:

ηi,u,v,k = P
(
wi,u,v = 1|u, i, zu,k = 1,�(t−1)) = pk

v

1 − ∏
w∈F+

i,u

(
1 − pk

w

) .

Finally, optimizing Q(�; �(t−1)) with respect to pk
v yields

pk
v =

∑
〈u,i〉

v∈F+
i,u

γu,k · ηi,u,v,k

S+
v,k + S−

v,k
, (5)

with S+
v,k = ∑

〈u,i〉
v∈F+

i,u

γu,k and S−
v,k = ∑

〈u,i〉
v∈F−

i,u

γu,k.

4.2. Complexity Analysis

The general scheme of the EM algorithm iterates through two steps, which (i) compute
the posterior likelihood of the model parameters, given the data and (ii) update the

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 2, Article 32, Publication date: December 2016.



32:12 N. Barbieri et al.

parameters, given the posterior likelihood. The complexity of the algorithm strongly
relies on efficiently implementing such steps. The posterior relies on being able to
efficiently computing the likelihood of a trace. Also, in our model, we parametrize the
probability of actions propagating due to influence: That is, the model parameters
represent the influence of each user within each community, and item adoption is
modeled as the effect of such an influence.

An apparent difficulty in this modeling strategy stems in the latent nature of an
influencer in an adoption: Since it is not known, both the likelihood of a trace and
the parameters exhibit a stochastic dependency towards the set of all possible eli-
gible influencers. Fortunately, the adopted modeling allows us to devise a strategy
for cumulating the contribution of each possible influencer independently of the spe-
cific item adoption. This guarantees that both the likelihoods of traces and the up-
dates of the model parameters can be accomplished in just two scans of the log
trace.

To see why, we can analyze the complexity of the learning phase for C-IC by con-
sidering the E and M steps of the EM algorithm separately (see Algorithm 1). For the
E step, we need to compute Pr(u|�k) for each user u and community k. We need to
consider two cases concerning �, which is the delay threshold used to define potential
influencers.

LEMMA 4.1. If � = ∞, then

log Pr(u|�k) = Au,k + Bk − Bu,k,

where Au,k, Bk, and Bu,k are as defined in Table I .

PROOF. We can rewrite the log probability of observing the adoptions of a user within
the community k as

log Pr(u|�k) =
∑

i:u∈Ci

log

{
1 −

∏
v≺iu

(
1 − pk

v

)} +
∑

i:u�∈Ci

∑
v∈Ci

log
(
1 − pk

v

)
=

∑
i:u∈Ci

log(1 − Ai,u,k) +
∑

i:u�∈Ci

Bi,k

= Au,k + Bk − Bu,k.

COROLLARY 4.2. When � = ∞, the complexity of the E step is O(KL + KM) in time
and O(KM + KN) in space.

PROOF. Overall, the computation of all log Pr(u|�k) requires two scans over D and
K; then, the updated values of γu,k can be computed by transforming those logs into
probabilities. In the first scan, the components Ai,u,k, Au,k, and Bi,k can be computed
incrementally, without the need of storing the values for Ai,u,k. Assuming that v is the
user directly preceding u in the trace i, it holds that Ai,u,k = Ai,v,k · (1 − pk

v). Au,k can
be computed by summing up the components Ai,u,k for each trace i that involves the
user u. The same holds for Bi,k, which is computed when iterating over trace i and the
community k. Finally, after computing Bi,k, we can obtain the components Bu,k for all
users u with a second scan over D and K.

For the case � < ∞, the main problem is efficiently computing F+
i,u and F−

i,u for each
user u and item i. Let li,v be the user u ∈ F−

i,v with the shortest temporal gap tv(i) − tu(i)
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Table I. Definition of the Counters Used for the C-IC Model (Section 4.2)

counter definition description

Nv |{i ∈ I|v ∈ Ci}| Total number of items adopted by v

Au,k

∑
i:u∈Ci

log(1 − Ai,u,k)
Log-likelihood of u’s activations

when the community is k

Ai,u,k

{ ∏
v≺iu

(
1 − pk

v

)
� = ∞

Bi,u,k
Bi,li,u,k

� < ∞
Likelihood that all influencers fails to

trigger u’s activation in the trace i
under community k

Bk

∑
i

Bi,k
Cumulative over all traces i

of Bi,k

Bu,k

∑
i:u∈Ci

Bi,k
Cumulative over all trace i
on which u is active of Bi,k

Bi,k

∑
v∈Ci

log
(
1 − pk

v

) Log-likelihood that all active nodes
in trace i will fail to trigger a next activation

under community k

B̃u,k

∑
i:u∈Ci

log Bi,li,u,k
Cumulative over all trace i on which u is active

of Bi,w,k where w = li,u

Bi,u,k

∏
v�iu

(
1 − pk

v

) Likelihood that all the influencers up to u
will fail to trigger the next activation

in trace i under community k

Cv,k

{ ∑
i:v∈Ci

Ci,k � = ∞∑
i:v∈Ci

Ci,v,k � < ∞
Cumulative over all traces i on which

v is active of Ci,k (resp. Ci,v,k)

Dv,k

{ ∑
i:v∈Ci

Ci,v,k � = ∞∑
i:v∈Ci

Ci,si,v ,k � < ∞
Cumulative over all traces i on which

v is active of Ci,v,k (resp. Ci,si,v ,k)

Ci,v,k

{ ∑
u�iv

γu,k
1−Ai,u,k

� = ∞∑
u≺iv

γu,k
1−Ai,u,k

� < ∞
Cumulative over influencers for v’s activation in trace i

of their conditional community membership
given that their activations happen in community k

Ci,k

∑
u∈Ci

γu,k

1 − Ai,u,k

Cumulative over active users in the trace i
of conditional community memberships γu,k

given that their activations happen in community k

�i,v,k

∑
u�iv

γu,k
Cumulative involvement in the community k

of potential influencers for user v (included) on trace i

�k

∑
u

γu,k
Cumulative over u of γu,k:

this acts as a prior for community k.

�v,k

∑
i:v∈Ci

�i,v,k
Cumulative over all users v active on

trace i of �i,v,k

�i,k

∑
u∈Ci

γu,k
Cumulative over users u active in the trace i

of γu,k.

from v in the adoption of i. Dually, let si,v be the user u such that v ∈ F+
i,u with the

farthest distance tu(i) − tv(i). Notice that si,v and li,v can be computed in O(log Li) by
exploiting appropriate index structures, such as, for example, B-Trees.

LEMMA 4.3. When � < ∞, then

log Pr(u|�k) = Au,k + Bk − Bu,k + B̃u,k,

where Au,k, Bk, Bu,k, and B̃u,k are defined as in Table I.
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PROOF. We can observe the following:

log Pr(u|�k) =
∑

i:u∈Ci

log

⎧⎨
⎩1 −

∏
v∈F+

i,u

(
1 − pk

v

)⎫⎬⎭ +
∑

i

∑
v∈F−

i,u

log
(
1 − pk

v

)

=
∑

i:u∈Ci

log(1 − Ai,u,k) +
∑

i

log Bi,li,u,k

= Au,k +
∑

i:u�∈Ci

Bi,k +
∑

i:u∈Ci

log Bi,li,u,k

= Au,k + Bk −
∑

i:u∈Ci

Bi,k +
∑

i:u∈Ci

log Bi,li,u,k

= Au,k + Bk − Bu,k + B̃u,k.

COROLLARY 4.4. When � < ∞, the complexity of the E step is O(L(K + log(maxi Li)) +
KM) time and O(K(maxi Li) + KM + KN) space.

PROOF. For each element u in each trace i, we need to compute li,u, which takes
O(log Li). The values Bi,u,k can be computed incrementally by exploiting the recursive
relationship for each adjacent pair in a trace. Finally, we only need pre-allocate the
space for the Ai,u,k values relative to a single trace. In fact, if v = li,u, then we can
associate with v a dual variable l̃i,v such that u = l̃i,v, and hence we can assume a look-
ahead strategy where the current value Bi,v,k can be pre-stored to contribute to the
computation of Ai,l̃i,v ,k. Finally, the Bk, Bi,k, Bu,k, and B̃u,k components can be computed
incrementally and hence log Pr(u|�k) can be computed in at most two scans of D.

Although not strictly required for the step E, it is convenient to store the Ai,u,k values
relative to each (u, i) ∈ D. The term ηi,u,v,k can be rewritten as pk

v/(1 − Ai,u,k). Storing
Ai,u,k allows us to efficiently compute the update for the parameters pk

v , as stated by
the following lemmas.

LEMMA 4.5. Given a user u and a community k, let p̃k
v be the value of pk

v computed in
the previous iteration and assume � = ∞. Then,

pk
v = p̃k

v

Cv,k − Dv,k

Nv�k − �v,k
,

where Cv,k, Dv,k, Nv, �k, and �v,k are defined as in Table I.

PROOF. We can write Equation (5) as pk
v = numv,k/denv,k. Let us consider each

element in turn. Concerning the numerator, we have

numv,k =
∑

i:v∈Ci

∑
u�iv

γu,k · ηi,u,v,k

= p̃k
v

∑
i:v∈Ci

∑
u�iv

γu,k

1 − Ai,u,k

= p̃k
v

∑
i:v∈Ci

(Ci,k − Ci,v,k)

= p̃k
v(Cv,k − Dv,k).
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As for the denominator, we have

denv,k = S+
v,k + S−

v,k

=
∑

i:v∈Ci

∑
u�iv

γu,k +
∑

i:v∈Ci

∑
u�∈Ci

γu,k

=
∑

i:v∈Ci

⎛
⎝∑

u∈Ci

γu,k −
∑
u�iv

γu,k

⎞
⎠ +

∑
i:v∈Ci

⎛
⎝∑

u

γu,k −
∑
u∈Ci

γu,k

⎞
⎠

=
∑

i:v∈Ci

(�i,k − �i,v,k) +
∑

i:v∈Ci

(�k − �i,k)

= Nv�k − �v,k.

COROLLARY 4.6. When � = ∞, the complexity of the M step is O(KL + KM) in time
and O(KL + KM + KN) in space.

Again, a similar formulation can be devised for the case � < ∞, which relies on the
computation of si,u for each trace i and user u within i.

LEMMA 4.7. Given a user u and a community k, let p̃k
v be the value of pk

v computed in
the previous iteration and assume � < ∞. Then,

pk
v = p̃k

v

Dv,k − Cv,k

Nv�k
,

where Dv,k, Cv,k, Nv, and �k are defined as in Table I.

PROOF. Again, we can analyse separately the numerator and denominator. For the
numerator, we can observe the following:

numv,k =
∑

i:v∈Ci

∑
u:v∈F+

i,u

γu,k · ηi,u,v,k

= p̃k
v

∑
i:v∈Ci

∑
u:v∈F+

i,u

γu,k

1 − Ai,u,k

= p̃k
v

∑
i:v∈Ci

(Ci,si,v ,k − Ci,v,k)

= p̃k
v(Dv,k − Cv,k).

Concerning the denominator, we can observe that, when � < ∞, we have

S−
v,k =

∑
〈u,i〉

v∈F−
i,u

γu,k

=
∑

i:v∈Ci

∑
u�∈Ci

γu,k +
∑

i:v∈Ci

∑
u∈Ci

(1 − 1�tu(i) ≤ tv(i) + ��)γu,k

=
∑

i:v∈Ci

⎛
⎝∑

u

γu,k −
∑
u∈Ci

γu,k

⎞
⎠ +

∑
i:v∈Ci

∑
u∈Ci

γu,k −
∑

i:v∈Ci

∑
u:v∈F+

i,u

γu,k

= Nv�k − S+
v,k.

It turns out that denv,k can be simplified as Nv�k.
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COROLLARY 4.8. When � < ∞, the complexity of the M step is O(L(K + maxi(log Li)) +
KM) in time and O(KL + KM + KN) in space.

PROOF. Dv,k can be computed in an incremental fashion. We can devise a look-ahead
strategy for computing Dv,k. More specifically, we can define s̃i,u such that whenever
u = si,v, then v = s̃i,u. As a consequence, each Ci,v,k contributes to the corresponding
Ds̃i,u,k. A single scan of the D allows us to compute numerator and denominator for each
pk

v , which can be updated afterwards.

We are finally able to state the main complexity result for the C-IC.

THEOREM 4.9. The complexity of a single step of the EM algorithm plugged with the
C-IC model is O(KL + KM) in time and O(KL + KM + KN) space when � = ∞ and
O(L(K + maxi(log Li) + KM) in time and O(KL + KM + KN) in space when � < ∞.

The resulting linear complexity of the iteration of the EM algorithm guarantees
that the approach scales to very large networks, at the same time guaranteeing the
discovery of high-quality communities.

5. MODELING TEMPORAL DYNAMICS

C-IC does not explicitly model temporal dynamics, as it focuses on modeling just binary
activations by employing a discrete-time propagation model. Here we present a more
fine-grained modeling that exploits time to better characterize the overall diffusion
process.

Given an observation window [0, T ], the idea is to explicitly model the likelihood of
the time at which each user adopted each item or the likelihood that the considered
adoption did not happen within time T . This approach assumes that there is a de-
pendency between the adoption time of the influencer and the one of the influenced.
In NetRate [Gomez Rodriguez et al. 2011], previously described in Section 2, this de-
pendency in modeled by a conditional likelihood f (tu|tv, αv,u) of transmission, which
depends on the delay �v,u. The likelihood of a propagation can be formulated by apply-
ing standard survival analysis [Lee and Wang 2003], in terms of survival S(tu|tv, αv,u)
(modeling the probability that a user survives uninfected at least until time tu) and
hazard functions H(tu|tv, αv,u) (modeling instantaneous infections).

We reformulate this framework into a community-based scenario. The Community-
Rate (C-Rate) propagation model is characterized by the following assumptions:

• User’s influence is limited to the community she/he belongs to. That is, the user is
likely to influence/be influenced by members of the same community, while the effect
of influence is marginal on members of a different community.

• Each user exhibits the same degree transmission rate on members of the same
community k. That is, the information diffusion from the user v to u within the k-th
community is characterized by the density f (tu|tv, αv,k), where αv,k is related to the
expected delay on the activations that v triggers within community k. The probability
of contagion depends on the time delay �v.u.

The parameter αv,k has a direct interpretation in terms of influence: High values of
αv,k cause short delays, and, as a consequence, they denote v as strongly influential
within k.
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On the basis of the above observations, we can adapt the NetRate model to fit the
scheme of Section 3 by plugging

P(u|�k) =
∏

i:u�∈Ci

∏
v∈Ci

S(T |tv(i), αv,k) ·
∏

i:u∈Ci

∏
v≺iu

S(tu(i)|tv(i), αv,k)

∑
v≺iu

H(tu(i)|tv(i), αv,k).
(6)

5.1. Learning

Again, instead of directly optimizing the likelihood based on Equation (6) above, we
introduce the latent binary variable wi,u,v, denoting the fact that u has been infected
by v on i. Then, the likelihood can be rewritten by defining

P(D, W|Z,�) =
∏

〈u,i〉�∈D

∏
k

∏
v∈Ci

S(T |tv(i), αv,k)zu,k

·
∏

〈u,i〉∈D

∏
k

∏
v≺iu

H(tu(i)|tv(i), αv,k)wi,u,vzu,k · S(tu(i)|tv(i), αv,k)zu,k

and replacing P(D|Z,�) with the above component in the likelihood. In the following, we
adopt the exponential distribution f (tu|tv, αv,k) = αv,k exp{−αv,k�v,u}, for which survival
and hazard can be expressed as S(tu|tv, αv,k) = exp{−αv,k�v,u} and H(tu|tv, αv,k) = αv,k.6

Then, the contribution to Q(�; �(t−1)) in Equation (2) becomes∑
u,k

γu,k log πk −
∑

〈u,i〉�∈D

∑
k

∑
v∈Ci

γu,k�vαv,k

+
∑

〈u,i〉∈D

∑
k

∑
v≺iu

ηi,u,v,kγu,k log αv,k −
∑

〈u,i〉∈D

∑
k

∑
v≺iu

γu,k�u,vαv,k,

and the probability of observing v as an influencer on u, i is given by

ηi,u,v,k = H(tu(i)|tv(i), αv,k)∑
v′≺iu H(tu(i)|tv′(i), αv′,k)

= αv,k∑
v′≺iu αv′,k

.

Finally, optimizing Q(�; �(t−1)) yields

αv,k =
∑

〈u,i〉∈D

v≺i u
ηi,u,v,kγu,k∑

〈u,i〉�∈D

v∈Ci
γu,k�v + ∑

〈u,i〉∈D

v≺i u
γu,k�u,v

, (7)

which expresses that the expected delay induced by v on adoptions of members of the
community k depends: (i) on the ability of the user in triggering adoptions within k
and (ii) on the likelihood of these adoptions to happen in the context of the considered
community.

5.2. Complexity Analysis

There are many similarities between the E and M steps of C-Rate and those of C-IC
with � = ∞. Not surprisingly, the same complexity results hold, as we shall see in the
following.

LEMMA 5.1. The following relationship holds (the counters are defined in Table II).

log P(u|�k) = Bk − Bu,k − T (Ak − Au,k) + B̃u,k − Ãu,k + Al
u,k.

6Similar formulations can be obtained by adopting different probability functions.
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Table II. Definition of the Counters Used for the C-Rate Model (Section 5.2)

counter definition description

Ak

∑
i

Ai,k
Cumulative over all traces i

of Ai,k

Au,k

∑
i:u∈Ci

Ai,k
Cumulative over all traces i on which

u is active of Ai,k

Ai,k

∑
v∈Ci

αv,k
Cumulative over all active users v active on

trace i of their hazard in community k

Ai,u,k

∑
v≺i u

αv,k
Cumulative over potential influencers for the activatation

of u in the trace i (u included)
of hazards in the community k

Ãu,k

∑
i:u∈Ci

tu(i)Ai,u,k
Cumulative over users u active in the trace i

of the product between Ai,u,k and
the respective activation time

Al
u,k

∑
i:u∈Ci

log Ai,u,k
Cumulative over users u active in the trace i

of the log of Ai,u,k

Bk

∑
i

Bi,k Cumulative over all the traces i of Bi,k

Bu,k

∑
i:u∈Ci

Bi,k Cumulative over traces i on which u is active of Bi,k

Bi,k

∑
v∈Ci

αv,ktv (i)
Cumulative over users v active on trace i

of the product between corresponding hazard in the community k and
their activation time

Bi,u,k

∑
v≺i u

αv,ktv (i)
Cumulative over potential influencers for the activation

of u in the trace i in the community k
of the product between hazards and activation times

B̃u,k

∑
i:u∈Ci

Bi,u,k
Cumulative over users u active on trace i

of Bi,u,k

Cv,k

∑
i:v∈Ci

Ci,k
Cumulative over traces i on which v is active

of Ci,k

Dv,k

∑
i:v∈Ci

Di,v,k
Cumulative over traces i on which v is active

of Di,v,k

Ci,k

∑
u∈Ci

γu,k/Ai,u,k
Cumulative over active users in the trace i of the ratio

between conditional community memberships γu,k
and Ai,u,k

Di,v,k

∑
u�i v

γu,k/Ai,u,k
Cumulative over influencers u for v’s activation in trace i

(v included) of the ratio between their community membership
and Ai,u,k

�k

∑
u

γu,k Cumulative over u of γu,k:
this acts as a prior for community k

�v,k

∑
i:v∈Ci

�i,k
Cumulative over all users v active on

trace i of �i,v,k

�i,k

∑
u∈Ci

γu,k
Cumulative over users u active in the trace i

of γu,k

	v,k

∑
i:v∈Ci

tv (i)�i,v,k
Cumulative over all trace i on which v is active

of the product between their activation
time and �i,v,k

τv

∑
i:v∈Ci

tv (i)
Cumulative over active users v on trace i

of their time of adoption

�i,v,k

∑
u�i v

γu,k
Cumulative involvment in the community k

of potential influencers for v’ activation (included) on trace i

Ei,k

∑
u∈Ci

γu,ktu(i)
Cumulative over active users u on trace i

of the product of community-level membership
and activation time

Ev,k

∑
i:v∈Ci

Ei,k
Cumulative over traces i on which v is active

of Ei,k

Fv,k

∑
i:v∈Ci

∑
u�i v

γu,ktu(i)
Cumulate over potential influencers u for each

active user v (included) in trace i of the product
between their community membership and activation time
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PROOF. We can observe the following:

log P(u|�k) =
∑

i:u�∈Ci

∑
v∈Ci

αv,ktv(i) − T
∑

i:u�∈Ci

∑
v∈Ci

αv,k

+
∑

i:u∈Ci

∑
v≺iu

αv,ktv(i) −
∑

i:u∈Ci

tu(i)
∑
v≺iu

αv,k

+
∑

i:u∈Ci

log
∑
v≺iu

αv,k

= Bk − Bu,k − T (Ak − Au,k)

+
∑

i:u∈Ci

Bi,u,k −
∑

i:u∈Ci

tu(i)Ai,u,k +
∑

i:u∈Ci

log Ai,u,k

= Bk − Bu,k − T (Ak − Au,k) + B̃u,k − Ãu,k + Al
u,k.

COROLLARY 5.2. The complexity of the E step is O(KL+ KM) in time and O(KM+ KN)
in space.

PROOF. It is easy to verify that, for each trace i and for each adjacent pair u, v,
the relationships Ai,v,k = Ai,u,k + αv,k and Bi,v,k = Bi,u,k + αv,ktv(i) hold. Consequently,
the components Ãu,k, B̃u,k, and Al

u,k can be incrementally computed as well. Thus, the
adoption within each trace can be sequentially processed and the counters can be
updated accordingly. A further scan on the whole trace log enables the computation
of the Au,k and Bu,k components. Notice that neither the Ai,v,k nor the Bi,v,k need to be
stored, as they are cumulated as long as the trace is processed.

Again, it is convenient to provide additional storage for the Ai,u,k components. In fact,
the term ηi,u,v,k can be rewritten as αv,k/Ai,u,k. This relationship allows for a fast way to
compute the update of αv,k in the M step, as stated below.

LEMMA 5.3. Given a user u and a community k, let α̃v,k be the value of αv,k computed
in the preceding iteration. Then,

αv,k = α̃v,k
Cv,k − Dv,k

(T · Nv − τv)�k − T · �v,k + Ev,k − Fv,k + 	v,k
,

where the counters are as defined in Table II.

PROOF. As usual, we can split the computation of Equation (7), that is, αv,k =
numv,k/denv,k. Concerning the numerator, we can then observe that

numv,k = α̃v,k

∑
i:v∈Ci

∑
u�iv

γu,k

Ai,u,k

= α̃v,k

⎛
⎝ ∑

i:v∈Ci

Ci,k −
∑

i:v∈Ci

Di,v,k

⎞
⎠

= α̃v,k(Cv,k − Dv,k).
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The remaining part can be rewritten as follows:

denv,k =
∑

i:v∈Ci

∑
u�∈Ci

γu,k(T − tv(i)) +
∑

i:v∈Ci

∑
u�iv

γu,k(tu(i) − tv(i))

= T
∑

i:v∈Ci

∑
u�∈Ci

γu,k −
∑

i:v∈Ci

tv(i))
∑
u�∈Ci

γu,k

+
∑

i:v∈Ci

∑
u�iv

γu,ktu(i) −
∑

i:v∈Ci

tv(i)
∑
u�iv

γu,k

= T
∑

i:v∈Ci

(�k − �i,k) −
∑

i:v∈Ci

tv(i)(�k − �i,k)

+
∑

i:v∈Ci

(Ei,k − Fi,v,k) −
∑

i:v∈Ci

tv(i)(�i,k − �i,v,k)

= (TMv − τv)�k − T �v,k + Ev,k − Fv,k + 	v,k.

COROLLARY 5.4. The complexity of the M step is O(KL + KM + KN) time and space.

PROOF. Given a pair of adjacent users in a same trace, the usual recursive relations
can be observed for the Di,v,k, �i,v,k, and Fi,v,k quantities. Consequently, all the compo-
nents that depend on them can be computed incrementally as well, by accumulating
values for each trace. Notice that the Ci,k components require to pre-allocate the Ai,v,k
values, which can be computed in a separate scan of the whole trace in O(KL) time.

We are finally able to state the main complexity result for the C-Rate.

THEOREM 5.5. The complexity of the EM algorithm plugged with the C-Rate model is
O(KL + KM + KN) in time and space.

6. EXPERIMENTAL EVALUATION

In this section, we report an experimental analysis aimed at assessing the effectiveness
of the proposed framework. Specifically, we are interested in the following aspects:

• Investigate under which conditions, and to which extent, the proposed methods can
actually detect communities from propagation logs.

• Comparatively assess the adequacy of the models to fit real data, by characterizing
the discovered community structures and relating them to predefined (synthetic
data) and previously unknown (real-world data) structures.

• Evaluate the predictive abilities of the proposed models in terms of both activations
and connections that a user is likely to exhibit.

To perform the aforementioned analysis, we rely on synthetic and real data. In both
cases, we are given a set V of users, a set directed social links E between them, and
a log D which records users’ activation times on a set of propagation traces. Each link
(u, v) ∈ E represents the direction of the information flow between the two considered
users, that is, information flows from u to v. Under the assumption that information can
spread only by exploiting the social connections among users, the network G = (V, E)
will naturally shape the process of information propagation. The exact realization
of users’ activation times on the considered traces actually depends on set of differ-
ent parameters that, without loss of generality, can be grouped into two dimensions:
structural properties of the network and the choice of the propagation model, which
ultimately determines how information/infections occur. This is the setting of our ex-
perimental evaluation. Even if we do not observe directly the network, we assume that
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Fig. 1. Visualization of the synthetic networks generated with different values of μ.

its hidden community structure is encoded, and thus it can be inferred by analyzing
the propagation log D.

The use of synthetic data allows us to specify a ground truth, that is, a predefined
community structure that we aim to discover without looking at the network. In the
case of real data, we forget the network, apply our methods to detect communities
by considering exclusively the propagation log, and, finally, measure the quality of
the discovered communities with standard measures (e.g., conductance, cut ratio,
modularity, etc.) using the network.

All experiments are run on a 2.7 GHz i7 machine by allocating a maximum of 10GB
of RAM.

6.1. Synthetic Datasets

When considering synthetic datasets, the underlying assumption is that propagation
traces follow the links exhibited by the underlying network. This is a well-known
property of information propagation in social network, and several studies [Weng et al.
2013, 2014] witness how adoptions within a network are influenced by neighboring
behavior.

Thus, in order to generate synthesized data, we proceed in two steps. First, we gener-
ate a network with a known community structure, as well as structural features typical
of real networks. To this aim, we use the generator of benchmark graphs described by
Lancichinetti and Fortunato [2009], which generates directed unweighted graphs with
possibly overlapping communities. The process of network generation is controlled
by the following parameters: (i) number of nodes (1,000), (ii) average in-degree (10),
(iii) maximum in-degree (150), and (iv) min/max the community sizes (50/750). The
four networks differ on the percentage μ of overlapping memberships, ranging into
0.001, 0.01, 0.05, and 0.1. As is clearly visible from the topology of the generated
networks reported in Figure 1, this last parameter strongly affects the structure of
the network, which ranges from well-separated (but still connected) components to
strongly overlapping components.

Given a network G = (V, E), the next step is to generate synthetic propaga-
tion cascades by simulating a propagation/contagion process that spreads over E.
In this phase, we face two main challenges: (i) limiting the bias introduced by the
choice of a particular propagation model and (ii) generating propagation cascades that
are likely to happen in a real-world scenario. To this purpose, we again parameterize
the propagation strategy and study the behavior of each algorithm by varying such a
parameter. The overall data generation schema generates |I| propagation traces based
on the following protocol. Given a network G = (V, E) with a known community struc-
ture, for each community k, an initial dummy node is connected to all nodes within
the considered community, with a random influence weight sampled from the interval
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Table III. Statistics for the Synthetic Data: Four Networks Corresponding
to Four Values of μ as in Figure 1

S1 S2 S3 S4
# of communities (K) 9 7 11 6
avg # of adoptions 56k 59k 82k 370k
avg length of traces 38 38 54 256
avg % of communities for trace 17% 24% 24% 82%

[0.02, 0.05]. For each trace to generate, we sample an initial dummy node, and, subse-
quently, we sample further dummy community nodes in sequence, where the nth node
is picked randomly with probability βn. In practice, β is a parameter controlling the
number of communities from which each trace starts its diffusion. A large value of β
will produce traces that start simultaneously in different communities. Conversely, a
small value will produce traces that start in fewer communities.

At time t = 0, the dummy nodes determine the activation of real nodes, from which
we start the subsequent diffusion process. At this stage, information can spread on the
network by exploiting the links. The strength of each link is determined by considering
both the out-degree (κout

· ) of the source and the in-degree (κ in
· ) of the destination:

weight(u, v) ∝ λ · κout
u

κout
max

κ in
v

κ in
max

+ (1 − λ) · rand(0.1, 1),

where κout
max and κ in

max are the maximum out-degree and in-degree, respectively, and λ
is used to introduce a random effect. In the propagation process, the weight of each
link represents a Bernoullian probability of infection. For each link, we also generate a
typical infection rate αu,v, sampled from a Gamma distribution with fixed parameters
(shape = 2, scale = 0.3).

To summarize, the data generation process depends on the degree of community
overlapping μ, the degree of propagation overlap β, and the size |I| of the propagation
log. In a first batch of experiments, we fix λ = 0.9, β = 0.2, and |I| = 1,500 and
vary the μ parameter as discussed above. For each network, we randomly generate
five propagation logs. The main properties of the synthesized data are summarized in
Table III. The average number of adoptions generated by the diffusion process grows
with the percentage of overlapping membership, as well as the average number of
communities that are involved in the propagation of each trace.

6.1.1. Baselines. The C-IC and C-Rate techniques are compared to some baseline mod-
els. The first two baselines build on the idea of network reconstruction. Given a log of
past propagations D we can apply either NetRate or the Independent Cascade inference
procedure [Saito et al. 2008], where we assume the complete graph. Both algorithms
provide a set of link weights as output, and higher weights witness the existence of
strong connections. We reconstruct the network by applying a sparsification proce-
dure based on the identification of a minimum threshold value on the weights (set
empirically to 10−14).

Finally, communities are discovered by applying the Metis algorithm [Karypis and
Kumar 1999], a scalable graph partitioning method that is reported to achieve good
performances on graphs extracted from various domains. METIS is based on multilevel
recursive-bisection; this allows scaling up to large-scale networks, and this is why it
is often considered as a baseline method or post-processing tool in the community
detection literature [Yang and Leskovec 2013; Ruan et al. 2013; Leskovec et al. 2010].
These baselines are denoted as NetRate/Metis and IC/Metis.

A further baseline is a standard clustering algorithm that groups user traces accord-
ing to their likelihood of adopting the same items. Here, a user trace is represented
by the set of all her/his adoptions. The method is based on a Bernoullian expectation
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Fig. 2. Summary of the evaluation on reconstructing community structure on synthetic networks with
planted communities and different levels of noise. From left to right: F-Measure, Adjusted Rand Index,
Normalized Mutual Information, and runtime in minutes (log scale).

maximization procedure; the assumption is that the adoption of an item by a user can
be explained in terms of a mixture of Bernoulli distributions, where each component
of the mixture characterizes a community. Similar users are characterized by the
same (Bernoullian) probability of adopting the same items. The output is a grouping
of users according to their adoption patterns: Each community is characterized by
the likelihood of adopting an item (and, consequently, to be part of a trace, with
no reference to temporal information). This clustering method does not provide any
information concerning the degree of influence of a user within a community.

For both the Independent Cascade and the C-IC model, we fix � = ∞. This allows a
better comparison with C-Rate, where all possible influencers are taken into account.
We plan to devote the study of how the influence window affects the quality of results
to a future work.

6.1.2. Results. We measure the quality of the discovered communities with respect to
the known ground-truth community structure by using the Adjusted Rand Index [Jain
and Dubes 1988], the F-Measure, and the Normalized Mutual Information (NMI) [Ana
and Jain 2003]. For all the considered approaches, we report in Figure 2 the average
quality indices, as well as their values of standard deviation relative to the five propa-
gation logs. Both C-IC and C-Rate perform particularly well on all four networks, even
if the performances degrade on the s4 network, where IC/Metis and the Bernoullian EM
achieve comparable results.

While NetRate/Metis and IC/Metis show similar performances in accuracy, C-Rate
exhibits higher quality than C-IC. Apparently, the approach to model community-based
temporal dynamics is more effective than simply relying on time-independent reaction.
In all four networks, the performances of the Bernoullian EM method are unstable,
and, in general, it achieves lower-quality indices than the ones corresponding to other
methods. This is a clear sign of the relevant role played by influencers when associating
a user to a community: Influencers tend to better explain the activation of a user on
a given propagation trace and hence tend to reduce the variability in the membership
assignments.

Both C-IC and C-Rate are consistently more efficient (up to three orders of magni-
tude) than methods based on network reconstruction. This is due to their inference
process, while the overhead introduced by the post-processing step (running Metis to
detect communities) is not significant. In fact, network reconstruction methods com-
pute pairwise influence weights by assuming a complete graph. As a consequence, they
are quadratic in time and do not scale to large networks.
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Fig. 3. Robustness at various level of the mixing parameter β: (a) and (b) show the NMI and the running
time. The graph also shows the average number of communities traversed by a single trace for each dataset
(red line in the graph). (c) Scalability to the number of traces.

In a second batch of experiments, we measure the effects of the mixing parameter β on
C-IC and C-Rate. Higher values of β cause a trace to spread over multiple communities:
As a consequence, we can measure the robustness of the algorithms by varying such
a parameter. For these experiments, we use the s3 network, and we generate 1,000
traces by ranging the β within [0.3, 0.8].

Figure 3(a) shows that the performances in Normalized Mutual Information do not
significantly change with β: the algorithms can still separate communities and asso-
ciate users with them, even when the average number of communities traversed by
a single trace (denoted by the red line in the plot) increases. On the other hand, the
value of the mixing parameter affects inference times, as shown in Figure 3(b). For both
methods the inference phase requires more iterations to reach convergence, as a conse-
quence of the fact that the separations between communities need to be reconstructed
iteratively.

A final experiment measures the scalability of the proposed algorithms for increasing
values of |I|. In Figure 3(c) we report the running times on three log traces with
increasing size, relative to the s3 network. Both algorithms scale linearly, and the
general trend, where C-Rate seems more efficient than C-IC, is confirmed.

6.2. Real-World Datasets

The proposed approaches are characterized by strong assumptions on the underlying
propagation model. By evaluating them on real-world data, we want to assess their
flexibility and accuracy in modeling real propagation phenomena. To this purpose, we
focus the next evaluation on real-world propagation traces, which have been obtained
by crawling the public timeline of Twitter.7 The canonical form of information propaga-
tion on Twitter is retweeting. However, tweets are complex entities, which can include
hashtags, textual and reference information. An accurate modeling of all these enti-
ties is out of the scope of our article. Instead, we consider a simpler fragment of the
propagations where we only track elementary units included in a tweet, which we iden-
tify as URLs. The assumption here is that if a tweet contains a URL, then it is more
likely to be retweeted by peers sharing the same interests: Hence URL propagations
can suitably highlight the underlying influence process and ultimately the underlying

7https://dev.twitter.com/docs/api/1/get/statuses/public_timeline.
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Fig. 4. Main properties of the considered real-world data. The plots show the distributions of the node
degrees, trace length, and number of traces traversed by a user.

community structure. Thus, we track the propagation of URLs across the network dur-
ing one month (August 2012), and each activation corresponds to the instance when a
user tweets a certain URL. The raw data have been preprocessed by filtering out users
who participated in fewer than five traces. Our final sample contains 28,185 nodes and
1,636,451 arcs. The activity log contains traces of 8,541 URLs for a total number of
516,412 adoptions (tweets). The average number of users per trace is 60, and, on aver-
age, a user performs 18 tweets. Other relevant features of the dataset can be observed
in Figure 4. In the experiments, we only focus on traces with length greater than 10.

Since we do not have any form of ground truth for the community structure of the
network under analysis, to assess the quality of the retrieved communities, we rely on
empirical objective functions. For a given partition of the network, such measures pro-
mote the identification of communities that are characterized by a higher internal con-
nectivity and that are marginally connected with the rest of the network. We consider
three different scores for measuring the quality of each detected partition/communities
(see Leskovec et al. [2010] for a detailed discussion):

• Conductance is the simplest formalization of the concept above, as it measures the
ratio between the number of edges inside each considered community and the number
of edges traversing its border.

• Internal Density measures the ratio between the actual edges and the possible edges
within the community.

• Cut Ratio is the ratio between the number of edges on the boundary of a community
and all the possible ones.

The above measures focus on evaluating the quality of each community, and they
do not consider the direction of edges. We thus adopt also the directed version of
modularity measure [Leicht and Newman 2008], which evaluates the overall quality
of the partition. Modularity compares the structure of the graph to that resulting from
a random graph, representing a null model, and is defined as

QG = 1
m

∑
u,v

[
Au,v − E(u, v)

]
δcu,cv

.

In the above equation, Au,v is the cell of the adjacency matrix corresponding to the
pair (u, v), and E(u, v) = κout

u κ in
v /m represents the expected likelihood of observing the

link (u, v) in the null (directed random graph) model. Also, δcu,cv
is the Kronecker delta

relative to community memberships for nodes u and v.
Higher modularity, internal density and conductance, as well as lower cut ratio,

denote good partitioning. In the following, we report and compare the results achieved
by C-Rate, C-IC, and Bernoullian EM, as methods based on network reconstruction
cannot handle this input. To obtain a reference value, we run the Metis algorithm
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Fig. 5. Summary of the evaluation on identifying community structure on Twitter. Each row in the figure
represents a measure.

to partition the network into communities and compute the quality values for such
partitions. The idea here is that if the network is known, then the communities can
be inferred from the links directly. By comparing this result with the results of the
network oblivious community detection algorithms allows us to measure how reliable
are such algorithms in detecting the underlying structure when only the propagation
log is given as input.

Figure 5 reports the values of the quality measures for the aforementioned methods,
and the values of conductance, internal density, and cut ratio were averaged over all
the discovered communities. In this experiment, we disable the annihilation procedure
and measure the quality values varying the number of communities. Surprisingly, both
C-Rate and C-IC perform better than Metis on both conductance and internal density.
C-Rate performs particularly well, even if there is no clear indication of number of
communities where a method perform better than all the others on all measures. In
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Table IV. Summary of the Evaluation on Twitter: C-IC
and C-Rate with Annihilation

C-IC C-Rate
Communities 32 17

Community size 113/2554/760 131/8315/1658(min/max/median)
QG 0.323 0.343

Conductance 0.794 0.687
Internal Density 0.02814 0.018

Cut Ratio 5.98 × 10−4 4.69 × 10−4

Time (secs) 5086 2070

particular, the modularity decreases when increasing number of communities, whereas
the opposite trend can be observed for the other measures.

On the other hand, this analysis shows that both C-IC and C-Rate exhibit high values
of cut ratio compared to those achieved by the Bernoullian clustering approach. In order
to better analyse this situation, in Figure 5 we also plot the results on harmonic mean
for those indices that are expressed as ratios. The harmonic mean in fact is known to
be more appropriate when averaging ratios, as it is insensitive to outliers with high
values and it tends to be dominated by low values. Thus, plotting the harmonic mean
on those measures provides a better insight of the overall tendency and mitigates the
effects of extremely high values. This analysis shows that

—The harmonic mean of cut ratio values exhibit now a normalized behavior, compared
to the values of Figure 5. The difference in performance between the different ag-
gregation strategy (avg. vs harmonic mean) suggests that C-IC and C-Rate tend to
produce some outlier communities in which nodes have an high number of inter-
community links.

—Internal density substantially increases for a large number of clusters. This is a
clear sign that some communities within the partitions are densely connected and
this boosts the value of harmonic mean.

To summarize, both C-IC and C-Rate exhibit good quality measures, which are com-
parable to, and in some cases even better than, the Metis baseline. This confirms that
the analysis of the propagation traces allows us to rebuild the latent community struc-
ture with enough accuracy. Furthermore, the adoption of a propagation model based
on social influence allows the identification of communities with high internal density.

Similar results can be obtained by enabling the annihilation procedure,8 as reported
in Table IV and discussed next. The resulting internal density is an order of magnitude
higher than the density of the whole graph (0.0041). Also, a large number of edges
tend to stay within the community they belong to, as witnessed by the values of
conductance. The values of modularity are a clear sign of reliable community structure
(note that acceptable modularity values are recognized starting from around 0.2–0.3).
The existence of a good community structure is confirmed by the diagonal block
structure in the adjacency matrices in Figure 6(a). These are adjacency matrices
where the users are sorted and grouped in blocks representing the communities.
Figure 6(b) represents the same adjacency matrix but with the blocks made explicit
and shaded in gray according to their relative density. In both cases, the regions with
higher density lie in the diagonal blocks.

Figure 6(c) summarizes influence dynamics by analyzing the distribution of the user
influence weights for each community. Here, darker colors denote higher weights, and
lighter ones conversely represent weights close to zero. These plots show that there is

8For both algorithms, we started with an initial number of 64 communities.
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Fig. 6. (a) Adjacency block matrices for C-IC and C-Rate. (b) Density blocks within the adjacency matrix.
(c) Distribution of influence weights.

Fig. 7. Distribution of the number of communities involved in a trace.

a general tendency to express influence within the same community of membership,
even if some users are able to exert influence on more communities.

Finally, Figure 7 shows the distribution of the communities involved in the diffusion
of each trace. Values tend to concentrate on few communities. These plots also show the
distribution of the normalized entropy of a single trace, computed by considering the
frequency of each community within the trace. In practice, even when a trace touches
multiple communities, low entropy values witness that there are a few predominant
communities, which embody the majority of the users involved in the trace.

7. CONCLUSIONS AND FUTURE WORK

We proposed a general framework for detecting communities in a network-oblivious
setting. The framework is based on the assumption that item adoptions are governed
by underlying stochastic diffusion process over the unobserved social network and
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that such diffusion model is based on community-level influence. We instantiated the
diffusion process by adopting two models that focus on both the influence exerted by a
user in a given community and the likelihood of a user to belong to that community.
The main difference in the two models is the way they model the contagion: C-IC is
essentially a discrete-time model, whereas C-Rate models a continuous-time diffusion
scenarios. The experiments show that both models are robust and effective and can
be profitably employed to discover communities and regions of influence in situations
where the social connections are not visible.

In this treatment, we did not cover the case where contagion can happen as the result
of a cumulative effect: That is, a user can adopt an item when a significant number of
users in the same community adopt that item as well. Again, two different modeling
perspective can be assumed, based either on adaptations of the Linear Threshold model
[Barbieri et al. 2013c; Kempe et al. 2003] for the case of discrete time or of the Cox
survival model [Lee and Wang 2003] for the case of continuous time. We plan to study
these models and compare them with the ones proposed in this article in our future
work.
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