
Spheres of Influence for More Effective Viral Marketing

Yasir Mehmood
Pompeu Fabra University

Barcelona, Spain
yasir.mehmood@gmail.com

Francesco Bonchi
ISI Foundation

Turin, Italy
francesco.bonchi@isi.it

David García-Soriano
Eurecat

Barcelona, Spain
david.garcia@eurecat.org

ABSTRACT
What is the set of nodes of a social network that, under a
probabilistic contagion model, would get infected if a given
node s gets infected? We call this set the sphere of influence
of s. Due to the stochastic nature of the contagion model we
need to define a notion of “expected” or “typical” cascade:
this is a set of nodes which is the closest to all the possible
cascades starting from s.

We thus formalize the Typical Cascade problem which re-
quires, for a given source node s, to find the set of nodes
minimizing the expected Jaccard distance to all the possible
cascades from s. The expected cost of a typical cascade also
provides us a measure of the stability of cascade propaga-
tion, i.e., how much random cascades from a source node
s deviate from the “typical” cascade. In this sense source
nodes with lower expected costs are more reliable.

We show that, while computing the quality of a candi-
date solution is #P-hard, a method based on (1) sampling
random cascades and (2) computing their Jaccard Median,
can obtain a multiplicative approximation with just O(1)
samples. We then devise an index that allows to efficiently
compute the sphere of influence for any node in the network.

Finally, we propose to approach the influence maximiza-
tion problem as an instance of set cover on the spheres of
influence. Through exhaustive evaluation using real-world
networks and different methods of assigning the influence
probability to each edge, we show that our approach outper-
forms in quality the theoretically optimal greedy algorithm.

Categories and Subject Descriptors
H.2.8 [Database Management]: [Database Applications-
Data Mining]; G.2.2 [Discrete Mathematics]: [Graph
Theory-Graph Algorithms]

Keywords
uncertain graphs; typical cascade; sphere of influence; influ-
ence maximization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915250

1. INTRODUCTION
The phenomenon of influence-driven cascades in social

networks has received tremendous attention in the last years
thanks to its applications, among which the most appealing
is viral marketing. The idea of viral marketing is to ex-
ploit a pre-existing social network in order to increase brand
awareness or to achieve other marketing objectives (such as
product sales) through self-replicating viral processes, anal-
ogous to the spread of viruses. More concretely, the idea
is to target a few “influentials”, in the hope that, through
word-of-mouth mechanism, they will be able to spread the
marketing message to a large portion of the network, as it
was a viral contagion.

This notion was formalized by Kempe et al. [24] in the
Influence Maximization problem, i.e., the problem of find-
ing the set of k influential nodes (usually named “seed set”)
such that activating them maximizes the expected number
of nodes that eventually get activated in a social network
where the contagion is governed by a stochastic propagation
model. This problem has received a great deal of attention
by the research community in the last decade.

However, Watts [39, 40, 41] challenges what he calls “The
Influentials Hypothesis”, i.e., the assumption that a small set
of super-star users can act as sparks to start a large forest
fire. Watts states that influence processes are highly un-
predictable and unreliable, and relying on a small seed set
simply aggravates the unpredictability. Therefore, in order
to implement viral marketing in the real world, Watts sug-
gests we should target a large seed set of ordinary individuals
who might trigger their small, but more reliable, sphere of
influence. Even if each seed manages to activate a handful
of other users, the large size of the seed set makes possible to
reach a critical mass that can make the campaign go viral.

Inspired by this vision, in this paper we study how to com-
pute the sphere of influence of each node s in the network,
together with a measure of stability of such sphere of influ-
ence, representing how predictable the cascades generated
from s are. We then devise an approach to influence max-
imization based on the spheres of influence and maximum
coverage, which is shown to outperform in quality the the-
oretically optimal method for influence maximization when
the number of seeds grows.

In order to better explain our contributions, we first need
to provide some preliminary background on the influence
maximization problem.

Influence maximization. Kempe et al. [24] modeled vi-
ral marketing as a discrete optimization problem, named
influence maximization, and based on the concept of prop-

711

http://dx.doi.org/10.1145/2882903.2915250
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2882903.2915250&domain=pdf&date_stamp=2016-06-14

agation model: i.e., a stochastic model that governs how
users influence each other and thus how contagion happens.
Given a propagation model and a set of nodes S ⊆ V , the
expected number of nodes “infected” in the viral cascade
started with S is called the expected spread of S, denoted by
σ(S). For a given k ∈ N the influence maximization problem
asks for a set S ⊆ V , |S| = k, such that σ(S) is maximum.

The most studied propagation model is the so called In-
dependent Cascade (IC) model. We are given a directed
probabilistic graph G = (V,E, p) where each arc (u, v) ∈ E
is labeled with a contagion (or influence) probability pu,v ∈
(0, 1], representing the strength of the influence of u over v.
At a given time step, each node is either active (an adopter
of product) or inactive. At time 0, a set S of seeds are
activated. Time unfolds deterministically in discrete steps.
When a node u first becomes active, say at time t, it has one
chance to influence each inactive neighbor v with probability
pu,v, independently of the history thus far. If the attempt
succeeds, v becomes active at time t+ 1.

Influence maximization is generally NP-hard [24]. Kempe
et al., however, show that the objective function σ(S) is
monotone1 and submodular2. When equipped with such
properties, the simple greedy algorithm that at each itera-
tion greedily extends the current set of seeds S with the node
w providing the largest marginal gain σ(S ∪ {w}) − σ(S),
gives a (1− 1/e)-approximation to the optimum [30, 24].

Another source of complexity is the fact that the com-
putation of the expected spread which is itself #P-hard.
Therefore in the work of Kempe et al. Monte Carlo simula-
tions are run sufficiently many times to obtain an accurate
estimate of the expected spread. In particular they show
that for any φ > 0, there is a k = poly(n/φ) such that by
using k samples, we can obtain a (1− 1/e−φ)-approximate
solution for influence maximization.

Finally, it is important to note that the (1− 1/e) approx-
imation ratio for influence maximization cannot be further
improved, at least under the IC propagation model. This
is due to the fact that influence maximization under the IC
model encodes max-k-cover as a special case, which has been
shown to be not approximable within ratio (1− 1/e+ ε) un-
less P= NP [15]. For this reason, while a very literature has
been produced on the efficiency and scalability of influence
maximization, understandably very little attention has been
devoted to improving the quality (at least in practice, given
that in theory it is not possible).

Problem studied. The problem studied in this paper is,
abstractly, to compute the set of nodes that, under a prob-
abilistic contagion model, would get infected if a given node
s get infected. This can be seen as a novel type of reach-
ability query in uncertain or probabilistic graphs [31, 23].
More in details, our data is a probabilistic directed graph
G = (V,E, p), where p : E → (0, 1] is the contagion proba-
bility, i.e., the probability that the arc will exist, or partic-
ipate, in a contagion cascade. Our query is a source node
s ∈ V , and the result is a set of nodes C ⊆ V , which we call
the sphere of influence of s, i.e., the set of nodes that would
get infected if the node s get infected.

This type of query can find application in many contexts
besides viral marketing: from epidemics (given an ebola
case, which other individuals should we quarantine?), to cor-

1σ(S) ≤ σ(T) whenever S ⊆ T .
2σ(S ∪ {w})− σ(S) ≥ σ(T ∪ {w})− σ(T) whenever S ⊆ T .

v2v1

v5

v3

v4
0.4

0.3

0.6

0.4

0.3

0.4
0.7 0.2

0.1

0.1

Figure 1: An example probabilistic graph.

porate workflows, computer and financial networks (given a
node failure, which is the typical cascade we can expect?).

As the contagion is a stochastic process, we need to define
a way to identify a unique set of nodes C. In fact, each
possible subset of V can be a possible cascade from s, each
one with its own probability of materializing.

Example 1. Consider the probabilistic graph in Figure 1
and suppose v5 is our query node. The probabilities asso-
ciated to the arcs define a probability distribution over the
possible subsets of {v1, v2, v3, v4}. For instance the set {v1}
is the cascade of v5 with probability 0.7 · (1− 0.4) · (1− 0.3) ·
(1−0.1) = 0.2646 (i.e., the arc (v5, v1) succeeds transmitting
the contagion, while (v5, v2), (v5, v4), and (v1, v2) all fail).
Similarly the set {v2, v4} is the cascade of v5 with probability
(1−0.7) ·0.3 · (1− ((1−0.4) · (1−0.6)) · (1−0.1) · (1−0.4) =
0.036936 (i.e., the arc (v5, v1) fails transmitting the conta-
gion, (v5, v4) succeeds and at least one among (v5, v2) and
(v4, v2) succeeds, finally (v2, v1) and (v2, v3) both fail).

As a final example, the set {v1, v3, v4} has null probability
of being the cascade of v5 as v3 can only be infected by v2.

Thus, how to identify a unique set of nodes C from this
probability distribution? One could think to select the most
probable cascade, but this would not be a good choice as ex-
plained next. If we have |V | = n nodes there are 2n possible
cascades and n is usually large. This means that we have
a probability distribution over a very large discrete domain,
with all the probabilities that are very small. As a conse-
quence the most probable cascade still has a tiny probability,
not much larger than many other cascades. Finally, the most
probable cascade might be very different from many other
equally probable cascades.

Instead in this paper we study the problem of comput-
ing set of nodes which is the closest (in expectation) to all
the possible cascades of s. For our purpose we need a set-
similarity measure: the Jaccard similarity is the most natu-
ral choice and it has the benefit of being a metric.

Paper contributions. The main contributions of this pa-
per are summarized as follows:

• We formalize the Typical Cascade problem which re-
quires, for a given source node s, to find the sets of
nodes minimizing the expected Jaccard distance to all
the possible cascades from s. Such expected cost also
represents, for a given node s, a measure of the stability
of its sphere of influence, i.e., how much a random cas-
cades from a source node s deviate from the “typical”
cascade. In this sense source nodes with lower expected
cost are preferable: e.g., in the context of viral market-
ing they can be considered more reliable influencers.

• We show that for a given source node s, computing the
expected cost for a candidate set of nodes is #P-hard.

712

• We then devise a solution based on sampling possible
worlds and then computing the Jaccard median [11] of
the obtained cascades.

• The next question we face is how many samples are
needed in order to get a “good” approximation. We
answer this question by providing theoretical bounds
showing that, quite surprisingly, we can obtain a mul-
tiplicative approximation with a constant number sam-
ples, i.e., not dependent on the size of the network.

• Backed by our theoretical results, we turn our attention
to the practical deployment of our algorithm and we
devise an index that allows to efficiently compute the
sphere of influence for any node in the network.

• Finally, we apply our framework to the influence max-
imization problem and propose a max-cover based so-
lution over the spheres of influence. Trough exhaus-
tive evaluation using real-world networks and different
methods of assigning the influence probability to each
arc, we show that our approach outperforms in quality
the theoretically optimal greedy algorithm.

Our method based on spheres of influence has several in-
teresting features that can explain its quality.

The first observation is that with our method we intu-
itively steer the attention of the greedy algorithm from the
average size of cascades (i.e., the expected spread), to the
size of the “average cascade”. This gives us a more reliable
approach to the influence maximization problem. In fact,
as suggested by intuition, the typical cascade of a node gets
larger when all the possible cascades from that node have a
large common portion, or in other terms, are similar. There-
fore, by picking nodes with large typical cascades, not only
do we pick nodes that are influential, but we also implicitly
favor influentials that are reliable. The connection between
the size of the typical cascade and its cost is confirmed em-
pirically in Section 6.3.

We also show empirically that, as the seed set size grows,
at a certain point the standard influence maximization ap-
proach reaches a saturation point where it is no longer able
to distinguish well among nodes to be added to the solu-
tion. Essentially, by focusing on the marginal gain w.r.t.
the expected spread, the standard method finds itself choos-
ing among many practically equivalent nodes. Instead our
method, by focusing on the sets themselves, is still able to
distinguish the next good candidate when the standard in-
fluence maximization has reached its saturation point. From
this moment on (that is to say, for large seed sets) our
method starts outperforming the theoretically optimal al-
gorithm w.r.t. the expected spread objective function.

Our empirical findings are consistently confirmed by a
thorough experimentation over several influence networks
which are the typical benchmarks used in the influence max-
imization literature, and by using different ways of learn-
ing/assigning the influence probability to each link.

To the best of our knowledge our work is the first to show
consistent improvement in terms of quality over the standard
greedy algorithm for influence maximization.

For repeatability sake our software and datasets are pub-
licly available at http://tinyurl.com/pxl9h89.

Roadmap. In Section 2 we first provide preliminary no-
tions and notations, then we introduce the Typical Cascade

problem, and study its hardness. In Section 3 we develop the
theory behind our method based on sampling and Jaccard
median, and we derive the bounds on the number of samples
needed to have a good multiplicative approximation. In Sec-
tion 4 we present the practical algorithm, while in Section
5 we show the application to influence maximization. Sec-
tion 6 contains our experiments, Section 7 covers the related
work, and Section 8 concludes the paper by summarizing the
results and discussing future lines of investigation.

2. THE TYPICAL CASCADE PROBLEM

2.1 Preliminaries
Let G = (V,E, p) be a probabilistic directed graph, where

p : E → (0, 1] is a function that assigns a probability of
existence to each edge. Following the literature, we consider
the edge probabilities independent [31, 22, 23, 6]. In this
setting, the possible-world semantics [1, 13] is a principled
way of defining the meaning of a query over uncertain data.
Specifically, the possible-world semantics interprets G as a
probability distribution over subgraphs of (V,E) defined by
choosing every edge e ∈ E independently at random with
probability p(e). That is, the probability of observing any
possible world G = (V,EG) v G is:

Pr(G) =
∏
e∈EG

p(e)
∏

e∈E\EG

(1− p(e)). (1)

Let q(G) be a function that when applied to a determin-
istic graph G returns a value in R. Following the possible-
world semantics querying q over the probabilistic graph G is
typically done by asking for its expected value:

q(G) = E
G∼G

q(G) =
∑
GvG

q(G) Pr(G).

When q(G) is a binary predicate then the expectation corre-
sponds to the probability that the predicate is satisfied. For
example, this is the case for instance of reachability query
r(u, v), which returns true if v is reachable trough a directed
path from u. In the context of probabilistic graphs, the cor-
responding reliability query would ask for the probability of
v being reachable from u.

In this paper we are interested in a type of query which re-
turns neither a scalar nor a binary, but a set of nodes. Given
a directed probabilistic graph G = (V,E, p) and a node s ∈ V
we are interested in the cascade originated from s, i.e., the
set of nodes that would get infected if s get infected. In
the case of a deterministic, graph that would be the set of
nodes reachable from s trough directed paths. But how to
determine the typical cascade in a probabilistic graph?

2.2 Problem statement
In a sense we want to define a notion of “expected” or

“typical” cascade: this is a cascade which is the closest to
the set of possible cascades of s. Towards formalizing this
intuition, we need a metric to compute the distance among
two possible cascades. As previously stated, a cascade sim-
ply corresponds to a set of nodes, we therefore use Jaccard
distance. Given two sets of nodes A,B ⊆ V , their Jaccard
distance is defined as

dJ(A,B) = 1− |A ∩B||A ∪B| =
|A⊕B|
|A ∪B| ,

which is known to be a metric (see, e.g., [10]).

713

http://tinyurl.com/pxl9h89

Given a deterministic graph G v G and a node s ∈ V ,
we denote by Rs(G) the set of nodes reachable from s in G.
Given G, s ∈ V and a set of nodes C ⊆ V , we define the
expected cost, ρG,s(C), of C as the expected Jaccard distance
between C and a random cascade generated from s:

ρG,s(C) = E[dJ(Rs(G), C)] =
∑
GvG

dJ(Rs(G), C) Pr(G).

(We omit the dependence on G or s when appropriate.)
This represents a measure of the stability, i.e., how much

random cascades from s deviate from C. It is therefore
desirable to find the set C∗ ⊆ V that minimizes the expected
cost ρs(C

∗). This set represents the typical cascade of the
node s, or what we abstractly call its sphere of influence.

Problem 1 (Typical cascade). Given a probabilis-
tic graph G = (V,E, p) and a source node s ∈ V find the
set C∗ ⊆ V that minimizes the expected cost:

C∗ = arg min
C⊆V

ρG,s(C).

We next study the complexity of our problem.

2.3 Complexity of Problem 1
The first source of complexity for the Typical Cascade

problem is that for a given source, computing the expected
cost of a set of nodes is #P-hard.

Theorem 1. Given a probabilistic graph G = (V,E, p), a
source node s ∈ V , and a set of nodes C ⊆ V , computing
ρG,s(C) is #P-hard.

Proof. We employ a reduction from s-t reliability on
graphs: given a directed probabilistic graphG and two nodes
s, t ∈ V (G), compute the probability that there is a path
from s to t, denoted rel(G, s, t). This problem was shown
#P-hard by Valiant [38].

Consider an instance 〈G, s, t〉 of s-t reliability, where G =
(V,E). Let n = |V | and consider the graph G′ which is
equal to G except that we add an arc from t to every node
in the graph with existence probability 1. We calculate the
cost of the two candidate medians H1 = V and H2 = V \{t}
and show that determining the reliability rel(G, s, t) can be
reduced in polynomial time to the computation of ρG′,s(H1)
and ρG′,s(H2), proving the theorem.

Denote by R(C) the event that a random cascade C from
s in G reaches t, and let U(C) = 1−R(C) denote the com-
plementary event. Note that there is a natural measure-
preserving mapping φ between cascades in G and cascades
in G′: φ(C) = V if R(C) holds, and φ(C) = C otherwise.
In particular, for very X ⊆ V it holds that

ρG′,s(X) = E
C

[dJ(φ(C), X)].

For any cascade C in G two cases may occur:

(a) R(C) = 1 (i.e., t ∈ C). Then φ(C) = V so
dJ(φ(C), H1) = 0 and dJ(φ(C), H2) = 1

n
.

(b) R(C) = 0 (i.e., t /∈ C). Then φ(C) = C so

dJ(φ(C), H1) = n−|C|
n

and dJ(φ(C), H2) = n−1−|C|
n−1

.

Therefore

ρG′,s(H1) = E
C

[
R(C) · 0 + U(C) · n− |C|

n

]
= E

C

[
U(C) · n− |C|

n

]
ρG′,s(H2) = E

C

[
R(C) · 1

n
+ U(C) · n− |C| − 1

n− 1

]
= E

C

[(
1− U(C)

)
· 1

n
+ U(C) · n− |C| − 1

n− 1

]
.

Manipulating these expressions yields

n · ρG′,s(H1)− (n− 1) · ρG′,s(H2) =

E
C

[U(C) · (n− |C|)]−

− E
C

[(
1− U(C)

)
· n− 1

n
+ U(C) · (n− |C| − 1)

]
=

E
C

[
U(C) ·

(
2− 1

n

)
− 1 +

1

n

]
= q ·

(
2− 1

n

)
− 1 +

1

n
,

where q = EC [U(C)] = PrC [t /∈ C] is the unreliability prob-
ability of t from s. Therefore the reliability is

rel(G, s, t) = 1−q =
1− 1

n
− nρG′,s(H1) + (n− 1)ρG′,s(H2)

2− 1
n

,

which shows that evaluating ρG′,s is #P-hard.

A natural approach to deal with some #P-hard prob-
lems is by means of Monte-Carlo sampling: this means to
sample a large enough number ` of independent cascades
S = {S1, . . . , S`} from s, and use them to compute an es-
timate ρ̄s(C) as the empirical mean of dJ(C, si) over the
cascades sampled:

ρ̄s(C) =
1

`

∑
i∈[`]

dJ(C, τi).

This is an unbiased estimator of the actual cost ρs(C) as
defined above, so one may hope to use ρ̄s(C) as a proxy
for the actual cost ρs(C) and attempt to solve the following
related optimization problem:

Problem 2 (Jaccard median). Given a finite set V
and a collection S of ` sets S1, . . . , S` ⊆ V , find a set C̄∗ ⊆
V that minimizes the average Jaccard distance of C̄∗ from
the elements of S.

C̄∗ = arg min
C⊆V

ρ̄s(C).

Chierichetti et al. [11] show that Problem 2 is NP-hard,
and present a polynomial-time approximation scheme.

The difference between Problems 1 and 2 is that in the
latter we are given a list of sets, while the first one defines
implicitly a distribution over exponentially many sets. Nei-
ther one seems easily reducible to the other, though: on the
one hand, enumerating all subgraphs to apply Jaccard me-
dian to our problem would require exponential time; on the
other hand, a solution to the typical cascade problem may
not extend to a general solution to Jaccard median, since the
set of possible cascades from a vertex in a graph has certain
special properties (for example, closure under unions).

714

3. SAMPLING AND JACCARD MEDIAN
In the previous section we hinted at a possible approach

to tackle the Typical Cascade problem:

1. sample ` random cascades from source nodes s;

2. compute their Jaccard median as the typical cascade.

An important question is how many deterministic graphs
we need to sample in order to obtain a good estimate of the
median quality, and to avoid overfitting in the scheme above.
To fix notation, let C denote a distribution over non-empty
subsets of [n] (for example, C could be the reachability sets
from a given vertex in an n-vertex uncertain graph). Let

ρ(X) = E
C∼C

[dJ(C,X)]

denote the cost of a candidate solution X, and

M∗ = arg min
M⊆[n]

ρ(M)

denote an optimal median with cost ε∗ = ρ(M∗).
Recall that we cannot evaluate ρ(X) efficiently, so we re-

sort to sampling ` independent elements of C and using the
empirical mean ρ̃(X) as an estimator for ρ(X). Then we
derive a median M that approximately minimizes ρ̃s on the
sample, with the hope that its actual cost ρ(M) will be close
to optimal.

While one can easily show that the cost of any particular
set X is approximately preserved (with additive error) in
the sample, this may not hold simultaneously for all sets.
The situation is analogous with the problem of overfitting
in learning theory: while the error of any given classifier
can be accurately estimated from the training set, if the
learner’s hypothesis class is large enough it may happen that
we find a hypothesis that does exceptionally well on the
training set, but performs badly on the test set. (In our

setting, the set 2[n] of all “candidate medians” play the role
of the hypothesis class.) In fact, as there are 2n candidate
medians, a naive estimate via the union bound would suggest
that Θ(n) samples are needed, which is too large a sampling
size to be practical (recall that n is the number of nodes
of the graph in our application). Fortunately this is far
from tight: our next result shows that these bounds can be
substantially improved, as long as the cost of the optimal
median is small: a constant number of samples suffice to get
good multiplicative approximations.

Theorem 2. Let M̃∗ = arg minX⊆[n] ρ̃(X). For δ ≥
exp(−`/10), the following holds with probability at least 1−δ:

ρ(M̃∗) ≤

(
1 +O

(
ε∗ +

√
log(`/δ)

`

))
ε∗,

More generally, whenever ρ̃(Ỹ) ≤ (1 + β)ρ̃(M̃∗), we have

ρ(Ỹ) ≤

(
1 +O

(
β + ε∗ +

√
log(`/δ)

`

))
ε∗,

In particular, for any α > ε∗, a sample of size ` =
log(1/α)/α2 suffices to obtain an (1 + O(α))-approximate
median. This is remarkable, because the number of sam-
ples is independent of n and moreover, it does not suffice
in general to estimate the cost of a candidate solution with
small multiplicative error (this would require ` = Ω(1/ε∗)).

This means that the empirical and true costs may differ sig-
nificantly, yet the cost of the solution found by solving the
empirical problem is very close to the true optimal. The re-
sult also yields a sublinear-time randomized approximation
algorithm for standard Jaccard median (Problem 2) when
the number of input sets is large: sample O(log(1/α)/α2) of
the input sets and work on the smaller instance.

Roughly speaking, the proof of Theorem 2 proceeds as
follows. We show that a) any nearly optimal median X
gives rise to an easily manageable approximate cost function
fX with certain properties implying that no median can do
much better than X (Lemma 1); and b) these properties of
fX are approximately preserved after sampling (Lemma 2).
This trick allows us to convert the statement “for all can-
didate medians, their sample cost is not much smaller than
ρ(M∗)” into a statement regarding the single function fX
(see Lemma 2), which can be proved directly. The proof of
these intermediate lemmas may be found in Appendix A.

Lemma 1. Let X ⊆ [n] and define

fX(Y) = E
C∼C

[
|Y ⊕ C|
|X ∪ C|

]
.

The following hold for all Y, Y ′ ⊆ [n]:

(a) dJ(Y, Y ′) ≤ min (ρ(Y) + ρ(Y ′), 6(ρ(X) + fX(Y) + fX(Y ′)) .

(b) If X ∩ Y 6= ∅, then 1− dJ(X,Y) ≤ ρ(Y)
fX (Y)

≤ 1
1−dJ (X,Y)

.

(c) If ρ(Y) ≤ ρ(X), then fX(Y) ≤ fX (X)
1−2fX (X)

.

Intuitively, in order to prove that X is a nearly optimal me-
dian, it suffices to show that X is an approximate minimizer
of fX(Y).

Denote by D the uniform distribution over the sample
S1, . . . , S`, and observe that ρ̃(X) = ED∼D[dJ(X,D)].

Lemma 2. Let X ⊆ [n]. Define Z = arg minY⊆[n] fX(Y)

and Z̃ = arg minY⊆[n] f̃X(Y), where f̃X(Y) =

ED∼D
[
|Y⊕D|
|X∪D|

]
. With probability at least 1− δ,

fX(Z̃) ≤

(
1 +O

(√
log(`/δ)

`

))
fX(Z),

provided ρ(X) is below some constant and δ ≥ exp(−`/10).

Moreover, whenever f̃X(Y) ≤ (1 + β)f̃X(Z̃), we have

fX(Ỹ) ≤

(
1 +O

(
β +

√
log(`/δ)

`

))
fX(Z).

We are now equipped with the tools needed to prove The-
orem 2.

Proof. Consider the optimal median M∗ with cost
ρ(M∗) = ε∗, and the optimal solution to the empirical

median M̃∗ = arg minX ρ̃(X). Since fX ≤ 1, we may
assume ε∗ is bounded above by a suitable constant. By
Lemma 2, with probability at least 1 − δ it holds that
ρ̃(M∗) ≤ ρ(M∗)(1 + O(

√
log(`/δ)/`)) , λ. By definition,

ρ(M∗) ≤ ρ(M̃∗) and ρ̃(M̃∗) ≤ ρ̃(M∗), so by applying
Lemma 1 to C and D,

2dJ(M∗, M̃∗) ≤ (ρ(M∗) + ρ(M̃∗)) + (ρ̃(M∗) + ρ̃(M̃∗)),

i.e., dJ(M∗, M̃∗) ≤ ε∗ + λ.

715

We introduce the following shorthand notation for com-
paring costs: x � y if x ≤ y/(1 − O(ε∗ + λ))O(1), x � y if
y � x, and x ≈ y if both x � y and x � y hold. Let Z

minimize fM∗(Y) and Z̃ minimize f̃M∗(Y). Then we have
dJ(M∗, Z) ≤ ρ(M∗) + fM∗(M

∗) + fM∗(Z) = 2fM∗(M
∗) +

fM∗(Z) ≤ 3ε∗, and ρ(Z) ≤ ε∗/(1 − 3ε∗) = O(ε∗) for small

enough ε∗. Likewise, dJ(M̃∗, Z) ≤ ρ(M̃∗)+ρ(Z) ≤ O(λ+ε∗)

and dJ(M̃∗, Z̃) ≤ ρ̃(M̃)+fM̃ (Z̃) ≤ λ+2f̃M (M̃) ≤ O(λ+ε∗).

By definition, fM∗(Z) ≤ fM∗(M
∗) and f̃M∗(Z̃) ≤

f̃M∗(Z). By Lemma 1, fM∗(M
∗) � fM∗(Z), so fM∗(Z) ≈

fM∗(M
∗) = ρ(M∗). The same lemma applied to f̃M∗ yields

f̃M∗(M̃
∗) ≈ f̃M∗(Z̃) ≤ f̃M∗(Z), thus fM∗(Z̃) � fM∗(Z) and

so fM∗(Z̃) ≈ fM∗(Z). Hence, by Lemma 2, with probability
at least 1−O(δ),

fM∗(M̃
∗) ≈ fM∗(Z̃) ≈ fM∗(Z).

If we divide δ by a constant factor and repeat the argu-
ment, we obtain the first part Theorem 2. The second
part is proved similarly by using the “moreover” part of
Lemma 2.

4. PRACTICAL ALGORITHMS
Next we put together the pieces from the theoretical in-

sights introduced in the previous section, and discuss practi-
cal efficiency considerations. First, we describe an indexing
scheme enabling efficient simulations of the cascades needed.
Then we present the main algorithm to compute a typical
cascade for every node of G.

In order to obtain the typical cascade for a given ver-
tex v, we first need to produce a certain number ` of cascades
from v. As we saw before, taking ` = O(log(1/α)) samples
is enough to obtain a (1 + α)-approximation provided that
the cost is Ω(α); if we wish this guarantee to hold simulta-
neously for all vertices, we may take ` = O(log(n/α)/α2).
Rather than sampling separately for each vertex, we sample
` possible worlds G1, . . . , G` from G, each of which implicitly
defines a sample cascade from each vertex v ∈ V (G), which
may be obtained by performing a DFS traversal of G rooted
at v.

A key observation that we exploit to speed up this pro-
cess is that all the vertices in the same strongly connected
component (SCC) have the same reachability set: since any
two vertices u, v in the same SCC are reachable from each
other, any vertex reachable by u is also reachable by v, and
viceversa. Therefore we can represent each sampled pos-
sible world Gi by its SCC structure. Representing Gi in
terms of its SCCs yields savings in both space usage and
computational runtime, because of the compactness of rep-
resentation and because a single DFS is sufficient to identify
the reachability set of all vertices in the same component.

Based on these observations we build an index that con-
tains for all the sample possible worlds G1, . . . , G`:

1. the condensation Ci of Gi, that is, the directed acyclic
graph of links between SCCs, obtained by contract-
ing [42] each component of Gi to a single vertex;

2. for each vertex v and index i, the identifier of the con-
nected component of v in Gi (see Figure 2);

Computing the SCCs and performing their contraction
can be performed in time linear in the total number of ver-
tices and edges of the graphs sampled [36].

Figure 2: Cascade index: for each sampled possible world
Gi it is stored the structure made of the condensation of the
SCCs and a matrix indicating for each vertex v and each
possible world Gi, the index of the component to which v
belongs in Gi.

Algorithm 1: Index construction

Input : Input graph G and number of samples `.
Output: Index I, Component Pointers P
I ← [|V | × `]
P ← [1× `]
for i← 1 to k do

Sample Gi from G
SCCs← StronglyConnectedComponents(Gi)
P[i]← transitiveReduction(SCCs)

foreach v ∈ V do
I[v, i]← nodeComponentIndex(v, SCCs)

end

end

return (I, P)

To further reduce the space consumption, we perform
the transitive reduction [3] of the condensation of Ci, i.e.,
find the unique graph Ti (not necessarily a subgraph of Ci)
with vertex set V (Ci) that preserves the reachability/non-
reachability between every pairs of vertices of Ci and has
the smallest number of edges. While the worst-case compu-
tational complexity of this task is theoretically equivalent to
that of Boolean matrix multiplication [3], for which the best
algorithms known run in time O(n2.373), in the practical in-
stances arising in our experiments the algorithm from [3]
proved adequate.

The procedure to construct the index is summarized in
Algorithm 1.

Given a node v and i ∈ [`], the cascade of v in Gi can be
obtained as follows: look at the identifier of the SCC of v
in Gi; recursively follow the links from the associated con-
densed vertex in Ci to find all the reachable components;
and output the union of the elements in the reachable com-
ponents. The time to perform this computation is linear in
the number of nodes of the output and the number of edges
of the condensation Ci, which is typically much smaller than
the number of edges of Gi.

For the computation of the typical cascade Cv of a node v,
we need to compute an approximate Jaccard median of the
collection of ` cascades S1, . . . , S` from v. To this end, we
use the work of Chierichetti et al. [11]. Their PTAS to
achieve arbitrarily good approximations is mostly of theo-

716

retical interest, so we use the algorithm described in Section
3.2 of [11], which achieves an 1 +O(ε) factor approximation
(where ε is the cost of the optimal median of the instance)

and runs in time Õ(k +
∑
i |Si|).

Algorithm 2: All Typical Cascades

Input : Input graph G, number of samples `.
Output: The typical cascades for each v ∈ G.

(I, P) ← Index(G, `)
for vinG do

S ← [1× `] (list of cascade sets)
for i← 1 to ` do

c← I[v, i]
cG← reachable components(P[i], c)
S[i]←

⋃
{nodes(c) | c ∈ cG}

Cv ← JaccardMedian(S) (by Chierichetti et al. [11])
end

end

return {(v, Cv) | v ∈ V (G)}

5. INFLUENCE MAXIMIZATION
In this section we present, as an application of the typical

cascade computation, a novel approach to influence maxi-
mization. While our approach is heuristic in nature, it is
motivated by the observations below.

1. Given a seed set S, we can define its stability as the
expected cost of its typical cascade C∗ exactly as we
have done for singleton nodes in Section 2. If this cost
is small we say that the seed set is reliable.

2. If S is a highly reliable seed set, the size of its typical
cascade C∗ is very close to the mean size of cascades
from S (see [11]). In other words, by optimizing for size
of the typical cascade we are also indirectly optimiz-
ing for expected spread, unless the optimal solution is
unreliable (which is ruled out by the next item).

3. It is an empirically observable phenomenon (see the
stability analysis in Sec. 6) that the expected cost of
the typical cascade of S tends to decrease as S grows.
Intuitively, this means that the cascading process be-
comes more and more deterministic (or predictable) as
the size of the seed set increases. We want to lever-
age this fact by acting as if the cascade from S were
effectively C∗. However, for sake of efficiency, in our
method we will not use the typical cascade of S, but
instead we will use the union of the typical cascades
of all the seed nodes in S. This is justified by the next
point.

4. It can be shown that some nearly optimal typical cas-
cade from seed set S is a superset of the typical cas-
cades for the cascades induced by the individual el-
ements of S. This is because if the typical cascade
has cost ε, then simply selecting all elements that are
present with probability at least 1/2 can be proved to

be a solution with cost at most ε + O(ε3/2) [11]. But
note that the probability that a given vertex is reach-
able from S is monotonically increasing with S, so the
set of elements reachable with probability at least 1/2
is monotonically increasing as well. Consequently the
nearly optimal typical cascade for S can be assumed

to contain the typical cascades for all its elements. (It
may contain further elements, which would increase
the solution size and decrease its cost, so we are being
conservative by ignoring them.)

These observations motivate us to approach the influence
maximization problem as max-cover problem over the typi-
cal cascades of the singleton nodes. Let S ⊆ V denote a set
of nodes and let Cv be the median cascade of each v ∈ V .
Write Φ(S) =

⋃
v∈S Cv for the elements covered by the typi-

cal cascades of all the nodes in S, Now, given an finite integer
k ≤ |V |, our goal is to find a set S∗ such that the coverage
Φ(S∗) is maximized for |S∗| = k.

Formally,

S∗ = arg max
S⊆V :
|S|=k

Φ(S)

This is an instance of the maximum coverage problem,
which can be approximated by the standard greedy algo-
rithm that runs for k iterations and at each iteration it se-
lects a node v whose addition increases the value of Φ the
most. This approach, whose pseudocode is shown in Algo-
rithm3, is named InfMax TC: Influence Maximization using
Typical Cascades.

Algorithm 3: InfMax TC

Input : Typical cascades for all v ∈ V : {C1, C2, · · · , C|V |}
Output: Seed set of k nodes: S∗

S∗ ← ∅
for i← 1 to k do

u = arg maxu∈V \S∗ Φ(S∗ ∪ u)

S∗ ← S∗ ∪ u
end

return S∗

In the next section we compare this method for influence
maximization with the standard method, w.r.t. the objec-
tive function of the influence maximization problem: the
expected spread.

6. EXPERIMENTS
In our experiments we first report basic statistics about

the spheres of influence (or typical cascades) and their com-
putation, such as their size, cost and the running time of
our procedure. We then focus on the main goal of our ex-
perimental assessment which is to show the performance, in
terms of quality, of our method for influence maximization.

The majority of the literature on influence maximization
uses a set of benchmark social graphs, where the influence
probability for each edge is artificially assigned according
to some certain standard methods. Perhaps more appropri-
ately, some authors [16, 33] have started to use influence
probabilities learnt from a log of past user activity. In our
experiments, for sake of exhaustiveness, we follow both ap-
proaches. We use six datasets which are often used as bench-
marks in the literature for influence maximization: in three
of these the edge probabilities are learnt, whereas for the
other three the probabilities are assigned artificially as de-
scribed later. Moreover, we use two different methods for
learning the contagion probabilities and two different meth-
ods for assigning them. This gives us a total of 12 datasets
to work with.

717

Datasets |V | |E| Type Probabilities
Digg 68K 875K directed learnt

Flixster 137K 1.2M undirected learnt
Twitter 23K 650K undirected learnt

NetHEPT 15K 31K undirected assigned
Epinions 76K 509K directed assigned
Slashdot 77K 905 directed assigned

Table 1: Dataset characteristics.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Edge Probability

C
D
F Digg

Flixster
Twitter

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Edge Probability

C
D
F

Digg
Flixster
Twitter

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Edge Probability

C
D
F Epinions

NetHEPT
Slashdot

Figure 3: CDF of edge probabilities learnt from Saito (left),
Goyal (center), and WC model (right). We do not report
the distribution for the fixed probability method as this is
not meaningful.

6.1 Dataset description
The three datasets that come with a log of users activity

and can thus be used for learning the influence probabilities
are Digg, Flixster and Twitter.

Digg is a news portal that allows users to submit news sto-
ries, as well as rate the posted stories by means of voting.
The ratings are then used to promote stories on the front
page of Digg portal. The data snapshot we use is related
to the the voting history of all the stories promoted during
June, 2009 [20]. It has 3M votes for 3.5K stories. The data
also provides a fan network from which a directed social
graph is induced.

Flixster is an online social networking service (https://
flixster.com/) enabling its users to rate and review movies.
Here, we have user ratings from November 2005 to Novem-
ber 2009 [21]. This amounts to 8.2M ratings for 49K
items/movies.

Twitter. The final dataset in this category is a snapshot
of Twitter, obtained by crawling its public timeline3. The
items in Twitter represent the URLs propagating across the
network. Unlike the previous two datasets, in Twitter the
user activity corresponds to sharing/resharing of the URLs
instead of rating items. The data contains 6K items and
383K user activities.

The other three datasets are from the SNAP dataset col-
lection [28]. These include NetHEPT, Epinions, and Slash-
dot. The first is a network of citations, whereas the other two
are social networks. These datasets are widely used in the
study of social networks and influence maximization [35, 9].
Table 1 reports basic statistics on the datasets used. When
a graph is undirected, we just consider the edges existing in
both directions.

3https://dev.twitter.com/rest/reference/get/statuses/user
timeline

Datasets avg(|C̃∗|) sd(|C̃∗|) max(|C̃∗|)
Digg-S 9.0 22.2 263
Flixster-S 4.3 12.0 439
Twitter-S 17.0 86.4 1459

Digg-G 7.3 17.0 130
Flixster-G 999.5 822.7 2589
Twitter-G 24.9 58.4 1727

NetHEPT-W 3.0 1.2 13
Epinions-W 3.6 8.6 684
Slashdot-W 4.8 19.4 420

NetHEPT-F 1067.5 915.5 4138
Epinions-F 4774.5 1574.4 6345
Slashdot-F 1337.0 841.5 5574

Table 2: In the table |C̃∗| denotes the size of the approx-
imated typical cascade computed and we report its aver-
age, standard deviation, and maximum over all nodes in the
graph.

6.2 Edge probabilities
Below we describe the two different ways of learning the

influence probabilities, and the two different ways of arti-
ficially assigning the influence probabilities, that we use in
our experiments.

Learning from real-world cascades. The datasets in
the first category (Digg, Flixster, and Twitter) provide us
two key elements: (i) a social network (ii) log of user activi-
ties (for different items) with the corresponding timestamps.
Both methods we use exploit these two pieces of input to
learn the edge probabilities. The first method is by Saito
et al. [33], which model the learning of the influence proba-
bilities as a likelihood maximization problem and devise an
EM algorithm to solve it.

The second method by Goyal et al. [16] follows a frequen-
tist approach. Among the various models they propose we
use the simplest one: the probability assigned to an edge
(u, v) is simply the number of times in the propagation log
in which v performs an action after u, divided by the number
of actions performed by u [16].

In the following we will use a suffix -S and a suffix -G to
denote the datasets with the probabilities learnt by following
Saito et al. [33] and Goyal et al. [16] respectively.

Artificial assignments. For the second group of datasets
(NetHEPT, Epinions, and Slashdot), we use two different
methods for artificially assigning probability to each edge.
The first the methods is the weighted cascade (WC) model
[9], which sets the probability pu,v over an edge (u, v) as:
pu,v = 1

inDeg(v)
. Here, inDeg(v) is the in-degree of node v.

In the second method, we assign a fixed probability pu,v =
0.1 to each edge (u, v).

In the following we will use a suffix -W and a suffix -F
to denote the datasets with the probabilities assigned by
weighted cascade method and fixed respectively.

Using the methods of learning/assigning edge probabili-
ties explained above, we have 12 datasets in total for our
experiments detailed in this section. Figure 3 reports the
CDFs of the edge probabilities in all datasets.

718

https://flixster.com/
https://flixster.com/
https://dev.twitter.com/rest/reference/get/statuses/user_timeline
https://dev.twitter.com/rest/reference/get/statuses/user_timeline

Tw
itt
er
-S

D
ig
g-
S

Fl
ix
st
er
-S

Tw
itt
er
-G

D
ig
g-
G

Fl
ix
st
er
-G

0

1

2

3

4

5

6

7

Ti
m

e
(in

 s
ec

.)

N
et
H
E
P
T-
W

E
pi
ni
on
s-
W

S
la
sh
do
t-W

N
et
H
E
P
T-
F

E
pi
ni
on
s-
F

S
la
sh
do
t-F

0

5

10

15

20

25

Ti
m

e
(in

 s
ec

.)

Tw
itt
er
-S

D
ig
g-
S

Fl
ix
st
er
-S

Tw
itt
er
-G

D
ig
g-
G

Fl
ix
st
er
-G

0.0

0.2

0.4

0.6

0.8

1.0

C
os
t

N
et
H
E
P
T-
W

E
pi
ni
on
s-
W

S
la
sh
do
t-W

N
et
H
E
P
T-
F

E
pi
ni
on
s-
F

S
la
sh
do
t-F

0.0

0.2

0.4

0.6

C
os
t

Figure 4: Time taken to compute the typical cascade C̃∗ (two left-most plots) and its expected cost ρG,s(C̃∗) (two right-most
plots).

≤30 (30,60] (60,100] (100,150] >150

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Digg-S

Size

C
os
t

≤10 (10,50] (50,100] (100,200] >200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Flixster-S

Size

C
os
t

≤20 (20,40] (40,60] (60,100] >100

0.
0

0.
2

0.
4

0.
6

Epinions-W

Size

C
os
t

≤2 (2,4] (4,6] (6,9] >9

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

NetHEPT-W

Size

C
os
t

Figure 5: Distribution of the expected cost ρG,s(C̃∗) of the typical cascade w.r.t. its size.

6.3 Computing the typical cascades
Table 2 reports basics statistics on the size of the sampled

cascades (Si) and the typical cascade computed from the

samples (C̃∗). Given that the edge probabilities learnt us-
ing the method of Goyal et al. [16] are larger than the prob-
abilities learnt by means of Saito et al. [33] method (See
Figure 3), not surprisingly also the average size of typical
cascades is larger for the former than for the latter.

The pattern is even more evident in Flixster, which show-
cases the fact that different strategies used to assign prob-
abilities may greatly impact the size of the samples, and
thereby, the size of the corresponding typical cascade. We
also note that when artificially assigned, the probabilities
set fixed to 0.1 also result in larger sampled cascades, and
thus larger typical cascade, than produced when assigning
probabilities by means of the WC model.

In Figure 4 we report the time taken to compute the typ-

ical cascade C̃∗ and its expected cost ρG,s(C̃∗), excluding
the index construction. That is, this is the time to extract
the cascades from the index and run the Jaccard median ap-
proximation on this instance. (Recall that we are using 1000
samples so the number of elements to process per vertex is
often in the hundreds of thousands.) The times reported use
a Python implementation, on a Intel Xeon 2.2 Ghz with 6
cores and 16 GB memory. As depicted, the time remains al-
most always well under 1 second except for a small number
of nodes. As regards the expected costs they rarely exceed
0.4, and in most of the dataset the average is around 0.2.

Figure 5 reports the distributions of the expected cost
w.r.t. the size of the typical cascade, in order to assess

whether the quality (or reliability) of the solution also de-
pends on its size. In every plot, if we disregard the bucket
of very small cascades, which is in any case not very inter-
esting for applications, we can observe that the larger is the
typical cascade, the more reliable it is (smaller cost). This
becomes even more evident when observing the maximum
cost observed: it is practically impossible to find a large
typical cascade with large cost. This matches the intuition
discussed in Section 1.

6.4 Influence maximization
We next present our main practical result: the fact that

our method for influence maximization based on spheres of
influence (presented in Section 5) outperforms the standard
influence maximization method for what concerns quality,
i.e., the expected spread achieved.

Quality of influence maximization. In the following,
the standard greedy (theoretically optimal) algorithm for
influence maximization [24] is denoted InfMax std, and our
greedy algorithm for maximum coverage using the sphere
of influence (typical cascade) of each node is denoted Inf-
Max TC. In all the experiments we use k = 200 for the seed
set size and we use the same number of sampled cascades
(1000) for both methods: to estimate the expected spread
for InfMax std, and for computing the typical cascades for
InfMax TC. The expected spread σ(S) is reported in each
iteration of the two greedy algorithms from |S| = 1 to 200.
For the standard greedy algorithm for influence maximiza-
tion InfMax std we use the implementation provided by [18].

719

The results for all 12 combinations of datasets and ways of
assigning edge probabilities are reported in Figure 6: on the
X-axis we report the size of the seed set |S|, on the Y -axis we
report the expected spread σ(S). We can observe the same
pattern emerging in all settings: InfMax std outperforms Inf-
Max TC in the selection of the first several seeds, but at a
certain point, as the seed set size grows, the two curves cross
and InfMax TC starts outperforming the standard method.

Point of saturation analysis. In order to gain more in-
sight into why this happens we study the “point of satura-
tion”: i.e., when the greedy algorithm starts seeing all the
nodes as indistinguishable w.r.t. the marginal gain. Recall
that the general strategy of greedy algorithms is to select
the next seed that provides the maximum gain w.r.t. the
objective function (expected spread InfMax std and maxi-
mum coverage for InfMax TC).

More in detail, at an arbitrary iteration j, let MGji de-
note the node that is ranked ith position for what concerns
the marginal gain it will add to the current solution. Any
greedy algorithm, so both InfMax std and InfMax TC would
select MGj1. In this test we check the ratio MGj10/MGj1,
i.e., we compare how much the marginal gain of the selected
node is larger than that of the node which is ranked 10th.
This ratio is by definition in [0, 1]: a ratio closer to 0 means
that the selected node is much better than the 10th node
in the ranking, while a ratio closer to 1, means that the im-
provement provided by the selected node is no different than
other potential candidates. A ratio close to 1 means that the
greedy algorithm can no longer distinguish well among can-
didates and thus its choice becomes essentially random. At
this point we say that the saturation has likely arrived.

Before presenting the results, it is worth noting that run-
ning this test is costly. In fact we need to run the standard
greedy algorithm with no optimization at all (for instance
we cannot use the optimizations in [18]). For this reason
we cannot scale. Therefore we report experiments only on
the smaller datasets, Twitter-S and NetHEPT-F. Moreover,
we start from the 50th iteration of the greedy algorithm and
compute the marginal gain ratio for a little more than 30
iterations.

The results of this experiment are shown in Figure 7,
where we can observe that, as expected the ratios grow with
the iterations, but also that InfMax std has a ratio already
much larger than InfMax TC at the 50th iteration, and very
close to 1 already at the 65th iteration. At this point Inf-
Max std is already unable to distinguish between the top-10
nodes with the largest marginal gain.

From this perspective, our method has more power to dis-
criminate among interesting nodes, as it reaches its satura-
tion point much later.

Stability analysis. As we already discussed in Section 5,
we can define the stability of a seed set S, as the expected
cost of its typical cascade C∗ exactly as we have done for sin-
gleton nodes: the smaller this expected cost the more stable
(or reliable) is the seed set. In this last experiment we com-
pare the expected cost of the seed sets selected by InfMax std
and InfMax TC. These costs are reported in Figure 8 for six
datasets.

We can observe that the seed sets selected by InfMax TC
are consistently more stable than the seed sets selected by
InfMax std. In some of the cases the two methods have sim-
ilar stability at the beginning of the greedy process (small
seed sets), but then they start diverging quite early. In

other cases (e.g., NetHEPT-W and Slashdot-W) InfMax std
starts by selecting very unstable influential nodes. This con-
firms one of the motivations behind our work (previously de-
scribed in Example 2 in Section 1): nodes that have a very
high expected spread are not necessarily reliable.

In conclusion, our method not only constantly outper-
forms the classic (and theoretically optimal) greedy algo-
rithm in terms of expected spread, but the seed sets it pro-
duces are also more reliable than those produced by the
standard greedy. This could be an important feature, when
it comes to real-world deployment.

7. RELATED WORK
To the best of our knowledge, no prior formulation of the

problem finding the sphere of influence of a node in terms
of its typical cascade exists in the literature.

A related line of research studies reliability in uncertain
graphs [44, 23, 2]. This, for instance, includes finding the
probability of connection between two nodes, also known as
2-terminal reliability [8]. Other variants of this problem ask
to compute the probability that all nodes are pairwise con-
nected or all nodes in a subset are pairwise connected [19,
34]. However, it has been shown that even the basic prob-
lem of computing 2-terminal reliability is #P-complete [38].
For this reason, several approximation schemes have been
proposed mainly exploiting Monte Carlo sampling methods
to estimate connection probabilities. Quite recently, these
ideas have been developed to formulate reliability search
problem in order to efficiently find all nodes reachable from a
set of source nodes greater than a probability threshold [25].

Another related line of research is the data-driven vacci-
nation problem: Given a set of already infected people in a
population, what are the healthy people who should be im-
mediately given vaccines to best control the epidemic? [43]

For what concerns influence maximization we have already
covered the main main background information in the Intro-
duction. The first algorithmic treatment of the problem was
provided by Domingos and Richardson [14, 32], who mod-
eled the diffusion process in terms of Markov random fields,
and proposed heuristic solutions to the problem. Later,
Kempe et al. [24] introduced influence maximization as a
discrete optimization problem: this is the definition that
has been followed in the subsequent literature. As explained
previously most of the effort in this area has been devoted
to improve the efficiency and scalability of influence maxi-
mization [27, 9, 17, 18].

Recently, Borgs et al. [7] proposed a near-linear time ran-
domized algorithm based on the idea of sampling “reverse-
reachable” (RR) sets in the graph. These ideas were ex-
tended to obtain a more practical algorithm – Two-phase
Influence Maximization (TIM) – by Tang et al. [35]. Cohen
et al. [12] proposed a sketch-based design for fast computa-
tion of influence spread, achieving efficiency and effective-
ness comparable to TIM.

Most of this literature on efficient algorithms for influence
maximization assumes the weighted social graph given, and
do not address how the link influence probabilities pu,v can
be obtained. Saito et al. [33] were the first to study the prob-
lem of learning the probabilities for the independent cascade
model from a set of past observations, formalizing it as likeli-
hood maximization and applying Expectation Maximization
(EM) to solve it. Later Goyal et al. [16] provided a simpler
and more scalable frequentist definition.

720

0 50 100 150 200

30
00

40
00

50
00

60
00

Twitter-S

seeds

E
xp

ec
te

d
S

pr
ea

d

InfMax_TC
InfMax_Std

0 50 100 150 200

50
0

10
00

15
00

20
00

25
00

30
00

Digg-S

seeds

E
xp

ec
te

d
S

pr
ea

d

InfMax_TC
InfMax_Std

0 50 100 150 200

20
00

40
00

60
00

80
00

Flixster-S

seeds

E
xp

ec
te

d
S

pr
ea

d

InfMax_TC
InfMax_Std

0 50 100 150 200

20
00

40
00

60
00

80
00

Twitter-G

seeds

E
xp

ec
te

d
S

pr
ea

d

InfMax_TC
InfMax_Std

0 50 100 150 200

50
0

10
00

15
00

20
00

25
00

Digg-G

seeds

E
xp

ec
te

d
S

pr
ea

d

InfMax_TC
InfMax_Std

0 50 100 150 20030
00

35
00

40
00

45
00

Flixster-G

seeds

E
xp

ec
te

d
S

pr
ea

d

InfMax_TC
InfMax_Std

0 50 100 150 200

0
50
0

10
00

15
00

NetHEPT-W

seeds

E
xp

ec
te

d
S

pr
ea

d

InfMax_TC
InfMax_Std

0 50 100 150 200

50
00

10
00
0

15
00
0

Epinions-W

seeds

E
xp

ec
te

d
S

pr
ea

d

InfMax_TC
InfMax_Std

0 50 100 150 200

10
00

30
00

50
00

70
00 Slashdot-W

seeds

E
xp

ec
te

d
S

pr
ea

d

InfMax_TC
InfMax_Std

0 50 100 150 200

55
00

60
00

65
00

70
00

75
00

NetHEPT-F

seeds

E
xp

ec
te

d
S

pr
ea

d

InfMax_TC
InfMax_Std

0 50 100 150 20011
00

13
00

15
00

17
00

Epinions-F

seeds

E
xp

ec
te

d
S

pr
ea

d

InfMax_TC
InfMax_Std

0 50 100 150 200

50
0

10
00

15
00

20
00

Slashdot-F

seeds

E
xp

ec
te

d
S

pr
ea

d

InfMax_TC
InfMax_Std

Figure 6: Influence maximization experiments in all 12 settings: on the X-axis we report the size of the seed set |S|, on the
Y -axis we report the expected spread σ(S).

721

50 55 60 65 70 75 80 85

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Iterations

M
ar

gi
na

l G
ai

n
R

at
io

InfMax_TC
InfMax_Std

50 55 60 65 70 75 80

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

Iterations

M
ar

gi
na

l G
ai

n
R

at
io

InfMax_TC
InfMax_Std

Figure 7: Marginal gain ration provided by seeds in NetHEPT-F
(left) and Twitter-S (right).

0 50 100 150 200

0.
20

0.
25

0.
30

0.
35

Twitter-S

seeds

C
os
t

InfMax_TC
InfMax_Std

0 50 100 150 200

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

NetHEPT-W

seeds

C
os
t

InfMax_TC
InfMax_Std

0 50 100 150 200

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Digg-S

seeds

C
os
t

InfMax_TC
InfMax_Std

0 50 100 150 200

0.
35

0.
40

0.
45

0.
50

Epinions-W

seeds

C
os
t

InfMax_TC
InfMax_Std

0 50 100 150 200

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Flixster-S

seeds

C
os
t

InfMax_TC
InfMax_Std

0 50 100 150 200

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

Slashdot-W

seeds

C
os
t

InfMax_TC
InfMax_Std

Figure 8: Stability analysis: expected cost of the seed sets
extracted by InfMax std and InfMax TC over six datasets.
By expected cost we mean the expected Jaccard distance
between the typical cascade generated by the seed set and
1000 random cascades generated by the same seed set. The
smaller this value, the more reliable the behaviour of the
seed set.

Following the likelihood maximization of [33], Math-
ioudakis et al. [29] studied the problem of sparsifying the
influence network to a prefixed extent while maximizing the
likelihood of generating the propagation traces in the given
log. Barbieri et al. [5] use a similar EM approach of [33] to
learn topic-aware influence probabilities.

Following the frequentist definition of [16] Kutzkov et al.
[26] studied the problem of learning influence probabilities in
a big data scenario, where the network topology might not
fit in memory and there is a continuous stream of actions
(e.g., a stream of tweets in Twitter). Following the same
definition of Goyal et al. [16], Tassa and Bonchi [37] studied
the privacy and security implications of learning influence
strength in a social network, and devised secure multiparty
protocols.

8. CONCLUSIONS AND FUTURE WORK
In this paper we study the problem of computing the

sphere of influence for each node in a social influence net-
work. We formalize this as the Typical Cascade problem
over a probabilistic directed graph where each directed edge
(u, v) has associated a probability representing the conta-
gion probability, or the strength of influence of u over v.
We devise a method based on sampling and computing the
Jaccard median of the samples. Then we propose a novel
approach to influence maximization based on max-cover ap-
plied to the sphere of influence of all nodes in the network.

Our main theoretical result is a bound showing that we
can obtain a multiplicative approximation to our problem
with a constant number samples, i.e., not dependent on the
size of the network (Theorem 2).

Our main practical contribution is the first method for
influence maximization outperforming the theoretically op-
timal greedy algorithm for influence maximization, for large
seed sets (Figure 6).

To the best of our knowledge our work is the first to show
consistent improvement in terms of quality over the standard
greedy algorithm for influence maximization, as confirmed by
our thorough experimentation using several different bench-
mark networks and different ways of assigning the influence
probabilities to the edges.

Given that the classic greedy algorithm is essentially opti-
mal in terms of quality under standard complexity assump-
tions, a very interesting line of research for future investiga-
tion is to characterize which graph properties of real-world
datasets allow the greedy algorithm, either the classic one or
our variant based on spheres of influence, to provide better
approximations. One may also exploit the gadget for the
max-cover greedy algorithm developed in [4] to obtain tight
bounds on the optimality gap of the solutions found.

The computations of the sphere of influence might find
applications in other contexts, that we plan to investigate
in our future research. First of all, remaining in the viral
marketing context, having the spheres of influence precom-
puted and stored in an index might provide a direct solution
to several variants of influence maximization. Consider for
instance the case where different segments of market (set
of users) have different values for a viral marketing cam-
paign. In our setting this is directly achieved by means of
a weighted max-cover using the available spheres of influ-
ence. Then when the next campaign is run, and the users
have different values, we can again reuse the same spheres
of influence. Other examples might include viral marketing
campaigns under different types of constraints, such as, e.g.,
when different nodes have different costs to become a seed.

Outside of viral marketing, we can consider application of
spheres of influence in contagion problems, or in the vacci-
nation problem [43].

722

9. REFERENCES
[1] S. Abiteboul, P. Kanellakis, and G. Grahne. On the

representation and querying of sets of possible worlds.
In SIGMOD, 1987.

[2] K. Aggarwal, K. Misra, and J. Gupta. Reliability
evaluation a comparative study of different techniques.
Microelectronics Reliability, 14(1):49–56, 1975.

[3] A. V. Aho, M. R. Garey, and J. D. Ullman. The
transitive reduction of a directed graph. SIAM J.
Comput., 1(2):131–137, 1972.

[4] R. A. Baeza-Yates, P. Boldi, and F. Chierichetti.
Essential web pages are easy to find. In WWW, 2015.

[5] N. Barbieri, F. Bonchi, and G. Manco. Topic-aware
social influence propagation models. In ICDM, 2012.

[6] F. Bonchi, F. Gullo, A. Kaltenbrunner, and
Y. Volkovich. Core decomposition of uncertain graphs.
In KDD, 2014.

[7] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier.
Maximizing social influence in nearly optimal time. In
SODA, 2014.

[8] T. B. Brecht and C. J. Colbourn. Lower bounds on
two-terminal network reliability. Discrete Applied
Mathematics, 21(3):185–198, 1988.

[9] W. Chen, Y. Yuan, and L. Zhang. Scalable influence
maximization in social networks under the linear
threshold model. In ICDM, 2010.

[10] F. Chierichetti and R. Kumar. LSH-preserving
functions and their applications. Journal of the ACM,
62(5):33, 2015.

[11] F. Chierichetti, R. Kumar, S. Pandey, and
S. Vassilvitskii. Finding the jaccard median. In SODA,
2010.

[12] E. Cohen, D. Delling, T. Pajor, , and R. F. Werneck.
Sketch-based influence maximization and
computation: Scaling up with guarantees. In CIKM,
2014.

[13] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, 2004.

[14] P. Domingos and M. Richardson. Mining the network
value of customers. In KDD, 2001.

[15] U. Feige. A threshold of lnn for approximating set
cover. Journal of the ACM, 45(4):634–652, 1998.

[16] A. Goyal, F. Bonchi, and L. V. Lakshmanan. Learning
influence probabilities in social networks. In WSDM,
2010.

[17] A. Goyal, F. Bonchi, and L. V. Lakshmanan. A
data-based approach to social influence maximization.
PVLDB, 5(1):73–84, 2011.

[18] A. Goyal, W. Lu, and L. V. Lakshmanan. CELF++:
optimizing the greedy algorithm for influence
maximization in social networks. In WWW, 2011.

[19] G. Hardy, C. Lucet, and N. Limnios. K-terminal
network reliability measures with binary decision
diagrams. IEEE Transactions on Reliability,
56(3):506–515, 2007.

[20] T. Hogg and K. Lerman. Social dynamics of digg. EPJ
Data Science, 1(1):1–26, 2012.

[21] M. Jamali. Flixster data set.
http://www.cs.ubc.ca/˜jamalim/datasets/.

[22] R. Jin, L. Liu, and C. C. Aggarwal. Discovering
Highly Reliable Subgraphs in Uncertain Graphs. In
KDD, 2011.

[23] R. Jin, L. Liu, B. Ding, and H. Wang.
Distance-Constraint Reachability Computation in
Uncertain Graphs. PVLDB, 4(9):551–562, 2011.

[24] D. Kempe, J. M. Kleinberg, and É. Tardos.
Maximizing the Spread of Influence through a Social
Network. In KDD, 2003.

[25] A. Khan, F. Bonchi, A. Gionis, and F. Gullo. Fast
reliability search in uncertain graphs. In EDBT, 2014.

[26] K. Kutzkov, A. Bifet, F. Bonchi, and A. Gionis.
STRIP: stream learning of influence probabilities. In
KDD, 2013.

[27] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,
J. M. VanBriesen, and N. S. Glance. Cost-effective
outbreak detection in networks. In KDD, 2007.

[28] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data.

[29] M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis,
and A. Ukkonen. Sparsification of influence networks.
In KDD, 2011.

[30] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An
analysis of approximations for maximizing submodular
set functions - I. Mathematical Programming,
14(1):265–294, 1978.

[31] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios.
k-Nearest Neighbors in Uncertain Graphs. PVLDB,
3(1):997–1008, 2010.

[32] M. Richardson and P. Domingos. Mining
knowledge-sharing sites for viral marketing. In KDD,
2002.

[33] K. Saito, R. Nakano, and M. Kimura. Prediction of
information diffusion probabilities for independent
cascade model. In KES, 2008.

[34] A. R. Sharafat and O. R. Ma’rouzi. All-terminal
network reliability using recursive truncation
algorithm. IEEE Transactions on Reliability,
58(2):338–347, 2009.

[35] Y. Tang, X. Xiao, and Y. Shi. Influence maximization:
Near-optimal time complexity meets practical
efficiency. In SIGMOD, 2014.

[36] R. E. Tarjan. Depth-first search and linear graph
algorithms. SIAM J. Comput., 1(2):146–160, 1972.

[37] T. Tassa and F. Bonchi. Privacy preserving estimation
of social influence. In EDBT, 2014.

[38] L. G. Valiant. The complexity of enumeration and
reliability problems. SIAM J. Comput., 8(3):410–421,
1979.

[39] D. Watts. Challenging the influentials hypothesis.
WOMMA Measuring Word of Mouth, Volume 3, pages
201–211, 2007.

[40] D. Watts and P. Dodds. Influential, networks, and
public opinion formation. Journal of Consumer
Research, 34(4):441–458, 2007.

[41] D. Watts and J. Peretti. Viral marketing for the real
world. Harvard Business Review, pages 22–23, May
2007.

[42] D. B. West. Introduction to Graph Theory (2nd
Edition). Prentice Hall, Aug. 2000.

[43] Y. Zhang and B. A. Prakash. Dava: Distributing
vaccines over networks under prior information. In
SDM, 2014.

723

http://www.cs.ubc.ca/~jamalim/datasets/
http://snap.stanford.edu/data

[44] K. Zhu, W. Zhang, G. Zhu, Y. Zhang, and X. Lin.
Bmc: an efficient method to evaluate probabilistic
reachability queries. In Database Systems for
Advanced Applications, pages 434–449. Springer, 2011.

APPENDIX
A. MISSING PROOFS FROM SECTION 3

Before showing the required proofs, we need to establish
a couple of technical lemmas. The first gives a relationship
between Jaccard distance and size of the union of two sets;
the second gives a tight bound on the expectation of the
inverse denominators of dJ(X,C).

Lemma 3. If A ∩B 6= ∅, then |A ∪B| ≤ min(|A|,|B|)
1−dJ (A,B)

.

Proof. Compute the Jaccard similarity of A and B:

J(A,B) =
|A ∩B|
|A ∪B| ≤

min(|A|, |B|)
|A ∪B| ≤ |A|

|A ∪B| ≤
1

1 + α
,

so their Jaccard distance satisfies

dJ(A,B) = 1− J(A,B) ≥ α

1 + α
.

Lemma 4. For all X,

1

|X| ≥ E
C∼C

[
1

|X ∪ C|

]
≥

1− 2
√
ρ(X)

|X| .

Proof. The first inequality is obvious.
To show the second, we first prove that, for all α ∈ (0, 1),

Pr

[
|C|
|X| /∈ [1− α, 1 + α]

]
≤ 1 + α

α
ρ(X).

To see this, B(C) denote the “bad event” |C||X| /∈ [1−α, 1+α].

Note that 1/(1− α) > 1 + α, so by Lemma 3, B(C) implies
dJ(C,X) ≥ α

1+α
. Then

E[dJ(C,X)] ≥ Pr[B(C)] · dJ(C,X),

so

Pr[B(C)] ≤ E[dJ(C,X)]

α/(1 + α)
=

1 + α

α
ρ(X).

Setting ε , ρ(X) and α ,
√
ε, we obtain

E
[

1

|X ∪ C|

]
≥ Pr[|X ∪ C| ≤ (1 + α)|X|]

(1 + α)|X|

≥
1− 1+α

α
ε

(1 + α)|X|

=
1

|X|

(
1

1 + α
− ε

α

)
≥ 1

|X|

(
1− α− ε

α

)
=

1

|X| (1− 2
√
ε).

A.1 Proof of Lemma 1
Proof. (a) Since dJ is a metric and the support of C is

nonempty,

dJ(Y, Y ′) = E
C∈C

[dJ(Y, Y ′)]

≤ E
C∈C

[dJ(Y,C) + dJ(C, Y ′)]

= ρ(Y) + ρ(Y ′).

On the other hand, observe that |Y ⊕ C| + |X ⊕ C| ≥
|X ⊕ Y | (the triangle inequality for the Hamming met-
ric), so by Lemma 4,

fX(Y) + ρ(X) = fX(Y) + fX(X)

= E
[
|Y ⊕ C|+ |X ⊕ C|

|X ∪ C|

]
≥ E

[
|X ⊕ Y |
|X ∪ C|

]
≥ |X ⊕ Y ||X|

(
1− 2

√
ρ(X)

)
≥ |X ⊕ Y ||X ∪ Y |

(
1− 2

√
ρ(X)

)
= dJ(X,Y)

(
1− 2

√
ρ(X)

)
.

Thus

dJ(X,Y) ≤ min

(
1,
fX(Y) + ρ(X)

1− 2
√
ρ(X)

)

≤ (fX(Y) + ρ(X)) ·min

(
1

ρ(X)
,

1

1− 2
√
ρ(X)

)
≤ 6 (fX(Y) + ρ(X)),

by an easy case distinction (ρ(X) ≤ 1/6 vs ρ(X) >
1/6).

Likewise, dJ(X,Y ′) ≤ 6 (fX(Y ′) + ρ(X)), so by the
triangle inequality,

dJ(Y, Y ′) ≤ dJ(Y ′, X) + dJ(X,Y ′)

= O(ρ(X) + fX(Y) + fX(Y ′)).

(b) Let τ = dJ(X,Y). Using Lemma 3,

|X ∪ Y ∪ C| ≤ |X ∪ C|+ |Y \X|
= |X ∪ C|+ (|X ∪ Y | − |X|)

≤ |X ∪ C|+
(

1

1− τ |X| − |X|
)

= |X ∪ C|+ τ

1− τ |X|

≤ |X ∪ C|
(

1 +
τ

1− τ

)
=
|X ∪ C|
1− τ .

Likewise, we have |X ∪ Y ∪ C| ≤ |Y ∪C|
1−τ . Thus,

|X ∪ C|, |Y ∪ C| ≤ |X ∪ C|
1− τ ,

|Y ∪ C|
1− τ .

and

(1− τ)
|Y ⊕ C|
|X ∪ C| ≤

|Y ⊕ C|
|Y ∪ C| ≤

1

1− τ
|Y ⊕ C|
|X ∪ C| .

724

Taking expectations over C, we obtain

(1− τ)fX(Y) ≤ ρ(Y) ≤ 1

1− τ fX(Y).

(c) By parts a) and b), ρ(Y) ≤ ρ(X) implies dJ(X,Y) ≤
ρ(Y) + ρ(X) ≤ 2ρ(X) and (1 − dJ(X,Y))fX(Y) ≤
ρ(Y) ≤ ρ(X) = fX(X).

A.2 Proof of Lemma 2
We need an auxiliary lemma.

Lemma 5. Let z̃ be the average of t ≥ 3 independent ran-
dom variables in [0, 1] each with expectation z > 0. Then

(a) If z ≤ 1
30

,

Pr

[
z̃ >

1

3

]
≤ 30z

et/3
.

(b) For all C > 0,

Pr

[
z̃ > z +

√
C

t

]
≤ e−2C .

Proof. (a) Let δ = 1
3z
− 1. By the multiplicative Cher-

noff bound,

Pr

[
z̃ >

1

3

]
≤
(

eδ

(1 + δ)1+δ

)zt
= (e1−3z · 3z)t/3

≤ (3ez) · (3ez)t/3−1

≤ (3ez) · e1−t/3

= (3e2z) · e−t/3

≤ 30ze−t/3.

(b) Let τ =
√
C/t. By the additive Chernoff bound,

Pr [z̃ > z + τ] ≤ e−2tτ2 = e−2C .

We proceed to prove Lemma 2.

Proof. For all i ∈ [n], define

ai = E
C∼C

[i ∈ Z ⊕ C]

|X ∪ C| , bi = E
C∼C

[i /∈ Z ⊕ C]

|X ∪ C| .

By linearity of expectation,

fX(Y) = E
c∼C

[∑
i∈[n][i ∈ Y ⊕ C]

|X ∪ C|

]

=
∑
i∈[n]

E
c∼C

[i ∈ Y ⊕ C]

|X ∪ C|

=
∑

i∈Z⊕C

ai +
∑

i∈Y⊕Z

bi

=
∑

i/∈Y⊕Z

ai +
∑

i∈Y⊕Z

bi,

where we used Y ⊕ C = (Z ⊕ C)⊕ (Y ⊕ Z). In particular,

fX(Z) =
∑
i∈[n]

ai,

and the optimality of Z implies fX(Z ⊕ {i}) ≥ fX(Z), i.e.,
ai ≤ bi for all i ∈ [n].

Now define the empirical counterparts of ai, bi:

ãi = E
D∼D

[i ∈ Z ⊕D]

|X ∪D| , b̃i = E
D∼D

[i /∈ Z ⊕D]

|X ∪D| .

Likewise, we have

f̃X(Y) =
∑

i/∈Y⊕Z

ãi +
∑

i∈Y⊕Z

b̃i.

Let Z̃ minimize f̃X(Y). Then

Z ⊕ Z̃ = {i ∈ [n] | ãi > b̃i},

so

fX(Z̃) =
∑

i/∈Z̃⊕Z

ai +
∑

i∈Z̃⊕Z

bi

=
∑
ãi≤b̃i

ai +
∑
ãi>b̃i

bi

and

fX(Z̃)− fX(Z) =
∑
ãi>b̃i

(bi − ai).

Note that

E
C∼C

[
1

|X ∪D|

]
= ai + bi , α

and, by Lemma 4,

1− 2
√
ρ(X)

|X| ≤ E
D∼D

[
1

|X ∪D|

]
= ai + bi , α̃.

We set the following parameters for convenience:

λ ,

√
3 + 3 ln(2`/δ)

`
, γ , |α− α̃|, C = 10 log(`/δ).

Since α̃ is the expectation of independent random vari-
ables in [0, 1/|X|], we can apply the additive Chernoff
bound:

Pr

[
|X| · γ >

√
ln(4/δ)

2`

]
≤ 2 exp

(
−2`

ln(4/δ)

2`

)
=
δ

2
.

In particular, with probability at least 1− δ/2, γ ≤ λ
|X| and

α− γ ≤ α̃ ≤ α+ γ.
Observe that ãi is the average of ` independent random

variables in [0, 1/|X|]. Since ai = 0 implies ãi = 0 and

hence ãi ≤ b̃i almost surely, we may assume ai > 0 for all i.
Letting zi = |X| · ai and using Lemma 5, we conclude that

(a) If zi ≤ 1
30

,

Pr

[
|X| · ãi >

1

3

]
≤ 30|X|ai

e`/3
.

(b) For all C > 0,

Pr

[
|X| · ãi >

√
C

`

]
≤ e−2C .

725

Write

B1 =

{
i ∈ [n] | zi ≤

1

30
∧ b̃i ≥ ãi

}
,

B2 =

{
i ∈ [n] | zi >

1

30
∧ bi ≥ ai +

√
C

`

}
,

A = [n] \ (B1 ∪B2).

Note that for small enough λ, the conditions b̃i ≥ ãi and
|α− α̃| ≤ λ imply zi > 1/30. By the above,

E

[∑
i∈B1

(bi − ai)

]
≤ 1

|X| E[|B1|]

=
1

|X|
∑

i|zi≤1/30

Pr[i ∈ B1]

≤ 30|X|
|X|e`/3

∑
zi≤1/30

ai

=
30

e`/3
fX(Z)

≤ O(δ · λfX(Z))

by our choice of λ, so Markov’s inequality implies that with
probability at least 1− δ/4 we have∑

i∈B1

(bi − ai) ≤ O(λfX(Z)).

Likewise,

E

[∑
i∈B2

(bi − ai)

]
≤ 1

|X| E[|B2|]

=
1

|X|
∑

zi>1/30

Pr[i ∈ B2]

≤ e−2C

|X|

∣∣∣∣∣{i ∈ [n] | ai >
1

30|X|

}∣∣∣∣∣
The size of the set B3 = {i ∈ [n] | ai > 1

30|X|} is at most

30|X|
∑
i∈B3

ai ≤ 30|X|fX(Z), therefore with probability at

least 1− δ/4 we have∑
i∈B2

(bi − ai) ≤
120e−2CfX(Z)

δ
= O(λfX(Z)).

Finally, notice that∑
i∈A∧ãi<b̃i

(bi − ai) ≤
∑

ai≥1/30

√
C

`

≤ 30

√
C

`

∑
i

ai

= 30

√
C

`
fX(Z)

≤ O(λfX(Z)).

Therefore with probability at least 1− δ,

fX(Z̃) ≤ (1 +O(λ)) fX(Z).

This establishes the first part of the theorem. To prove the

second, suppose that f̃X(Y) ≤ (1 + β)f̃X(Z̃). Observe that

fX(Ỹ)− fX(Z) =
∑

i∈Ỹ⊕Z

bi − ai.

and

f̃X(Ỹ)− f̃X(Z̃) =
∑

i∈Ỹ⊕Z̃

b̃i − ãi ≤ βf̃X(Z̃).

If we split the set T = Ỹ ⊕ Z̃ into T ∩B1, T ∩B2 and T ∩A
and apply our bounds for the size of B1 and B2, we conclude
that with probability 1− δ,∑
i∈Ỹ⊕Z̃

(bi − ai) ≤ O(λ) · f̃X(Z̃) +
∑

i∈T∩A,zi≤1/30,b̃i≤ãi

(bi − ai)

and ∑
i∈T∩A,zi≤1/30,b̃i≤ãi

(bi − ai) =
∑

i∈T∩A,zi≤1/30,b̃i≤ãi

O(̃bi − ãi)

= O(βfX(Z̃)).

Thus

fX(Ỹ)− fX(Z) ≤ |fX(Z̃)− fX(Z)|+
∑

i∈Ỹ⊕Z̃

(bi − ai)

= O(β + λ)fX(Z).

726

	Introduction
	The Typical Cascade Problem
	Preliminaries
	Problem statement
	Complexity of Problem 1

	Sampling and Jaccard Median
	Practical Algorithms
	Influence Maximization
	Experiments
	Dataset description
	Edge probabilities
	Computing the typical cascades
	Influence maximization

	Related work
	Conclusions and Future work
	References
	Missing proofs from Section 3
	Proof of Lemma 1
	Proof of Lemma 2

