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Here we present the Global Epidemic and Mobility (GLEaM) model that integrates sociodemographic
and population mobility data in a spatially structured stochastic disease approach to simulate the spread
of epidemics at the worldwide scale. We discuss the flexible structure of the model that is open to the
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inclusion of different disease structures and local intervention policies. This makes GLEaM suitable for the
computational modeling and anticipation of the spatio-temporal patterns of global epidemic spreading,
the understanding of historical epidemics, the assessment of the role of human mobility in shaping global
epidemics, and the analysis of mitigation and containment scenarios.

© 2010 Elsevier B.V. All rights reserved.
uman mobility
nfectious diseases

. Introduction

The increasing computational and data integration capabilities
itnessed in recent years have enabled the development of com-
utational epidemic models of great complexity and realism [36].
enerally accepted methodologies are represented by very detailed
gent-based models [17,33,18,19,24,8,34] and large-scale spatial
etapopulation models [38,21,25,29,12,16,9,1,2]. These two major

lasses of computational models have different resolutions and
imitations. Agent-based models are stochastic, spatially explicit,
iscrete-time, simulation models where the agents represent sin-
le individuals. The infection can spread among individuals by
ontacts within household members, within school and work-
lace colleagues and by random contacts in the general population.

ne of the key features of the model is the characterisation of

he network of contacts among individuals based on a realistic
odel of the sociodemographic structure of the population (see for

nstance [27] for a comparison between several models based on
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this approach). The second scheme relies on metapopulation struc-
tured models that considers the system divided into geographical
regions defining a subpopulation network where connections
among subpopulations represent the individual fluxes due to the
transportation and mobility infrastructures [1–3,10,11]. Infection
dynamics occurs inside each subpopulation and is described by
compartmental schemes that depend on the specific etiology of
the disease and the containment interventions considered [38,21].
Agent-based models provide a very rich data scenario but the com-
putational cost and most importantly the need for very detailed
input data has limited their use to a few country level scenarios
so far [27], up to continent level [34]. On the opposite side, the
structured metapopulation models are fairly scalable and can be
conveniently used to provide world-wide scenarios and patterns
with thousands of stochastic realizations [29,12,16,9,1,2,22]. While
on one hand, the level of information that can be extracted in
structured metapopulation models is less detailed than those of
agent-based models, on the other hand, their computational scala-
bility allows the simulation of disease spreading on the worldwide
scale and the use of statistical approaches that leverage on Monte
Carlo techniques based on the analysis of a large number of simu-

lation runs exploring the parameter space.

In this paper, we provide a detailed presentation of the Global
Epidemic and Mobility (GLEaM) model [2] that uses a structured
metapopulation scheme integrating the stochastic modeling of
the disease dynamics, high resolution census data worldwide and
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uman mobility patterns at the global scale. GLEaM makes use of
igh resolution population data [6,7] that allow for the definition
f subpopulations according to a Voronoi decomposition of the
orld surface centered on the locations of major transportation
ubs. This procedure leads to the construction of a metapopula-
ion model consisting of more than 3300 subpopulations across the
orld connected through a network of more than 16,800 mobility
uxes describing the daily patterns of travel and mobility among
ubpopulations. In particular GLEaM integrates data obtained from
he International Air Transport Association (IATA [30]) and Official
irline Guide (OAG [35]) databases and multimodal mobility data
ollected and analyzed from more than 30 countries in 5 differ-
nt continents. This integration results in a worldwide multiscale
obility network spanning several orders of magnitude in inten-

ity and spatio-temporal scales. The disease dynamics is simulated
y a fully stochastic compartmental approach defining the tempo-
al equations for each subpopulation [1]. The equations of different
ubpopulations are then coupled through effective interactions and
echanistic schemes accounting for the mobility of individuals

ncoded in the multiscale mobility network.
The GLEaM computational model trades off the high realism of

gent-based models for the computational scalability of the algo-
ithm implementation and the relatively small amount of input
ata needed to initialize the model. This allows detailed analy-
is of epidemic patterns at the worldwide scale. This feature is
xtremely relevant in evaluating the time pattern of emerging
nfectious diseases, and cannot be accounted for by agent-based

odels restricted to country or continent level. For instance, given
set of initial conditions for a local outbreak of a new strain of

nfluenza, the timeline of the arrival of the epidemic in each country
nd the ensuing activity peak are mainly determined by the human
obility network that couples different regions of the world. By

ooking at individual countries or a given continent in isolation, any
stimate of the epidemic timeline is based on assumptions about
mported cases from the rest of the world. This is obtained with-
ut an explicit coupling or knowledge of the propagation of the
isease in the system outside the boundaries of the country or the
ontinent that is the focus of the model. GLEaM instead explicitly
ntegrates human mobility patterns that allow us to consistently
imulate the mobility of infectious individuals on the global scale
hus providing ab initio estimates of the epidemic timeline in each
ountry or urban area without assumptions on case importation.

Differently from agent-based models, the scalability of GLEaM
as also the advantage of making possible the use of statistical
ethods such as Monte Carlo likelihood analysis to fit epidemic

arameters which are usually not known in the case of new emerg-
ng diseases, with the aim of understanding the observed pattern
nd simulate its possible future spread [1]. This is enabled by the
ossibility of generating large numbers of in silico epidemics to
llow the self-consistent estimate of all the parameters needed
or the simulation of the future propagation of the disease. A large
umber of computational runs is indeed needed to systematically
xplore the space of parameters and, for each point in such space,
o build a robust statistical ensemble and reduce the fluctuations
nduced by stochastic effects. The intensive CPU requirements of
gent-based models limit the feasibility of large explorations of the
pace of parameters aimed at estimation procedures, or at perform-
ng sensitivity analysis on the parameters included in the models
o assess effects in the simulated results induced by their changes
27]. This constraint becomes particularly relevant in the case com-
utational models are used as risk-assessment tools for scenario

valuations of an epidemic emergency in real time.

Here we specify the definition and integration of the differ-
nt data layers composing the model, and also provide a detailed
xplanation of the Voronoi tessellation used for the subpopula-
ion definition. The construction of the mobility network and the
onal Science 1 (2010) 132–145 133

derivation of the stochastic mobility equations among different
subpopulations are described in detail as well. We illustrate the
time-scale separation technique that allows for the integration of
the mobility processes occurring on small time scales as effec-
tive coupling terms. This method reduces the computational cost
by simulating in an explicit way only mobility processes occur-
ring on the long time scales. The metapopulation structure and
the mobility processes are then integrated in the basic equations
describing the time behavior of the disease process within each
population. We detail the structure of the equations in the specific
case of an influenza-like-illness compartmentalization, although
the equations can be generalized to generic compartmental struc-
tures according to the disease of interest. The second part of
the paper is devoted to the algorithmic implementation of the
model. We describe the algorithm structure, inputs and outputs
that allow GLEaM to perform the simulation of stochastic real-
izations of the worldwide unfolding of the epidemic. From these
in silico epidemics a variety of information can be gathered, such
as prevalence, morbidity, number of secondary cases, number of
imported cases, hospitalized patients, amounts of drugs used, and
other quantities for each subpopulation with a minimal time res-
olution of 1 day. Finally we provide an example of the results that
can be obtained with GLEaM by simulating the 2001–2002 seasonal
influenza spreading and comparing the computational results with
real data from different surveillance infrastructures.

2. Related work

Many data-driven epidemic models have been proposed, how-
ever only a few, mostly based on metapopulation schemes, tackle
the spatio-temporal behavior of diseases at the global scale. Agent-
based models are to be able to consider individually targeted
interventions for the mitigation of an epidemic, as well as the pos-
sibility to introduce changes of behavior at the individual level
reproducing the adaptation of individuals to the disease spread.
This is performed by tracking each agent of the artificial society
considered in the model, and applying rules for the behavior of indi-
viduals in their virtual space. Therefore, most agent-based models
can be very accurate in the description of the spread of a disease in
time and spatial scales if it is possible to integrate high quality data
at the individual agent level. The difficulties in gathering high qual-
ity data worldwide and to the limit imposed by high performance
computing, however have restricted the application of agent-based
models to local populations or a few countries – such as e.g.,
the US [24,19,27], the UK [19], Italy [8], Thailand [33,18] – up to
the continent of Europe [34]. Among the metapopulation schemes
at the global level available in the literature [29,12,16,9,1,2,22],
the main differences lie in the accuracy and completeness of the
demographic and mobility layers. Indeed, being based on simple
homogeneous assumptions inside each subpopulation, the accu-
racy and realism of these models are found in their ability to capture
the distribution of population and the travel flows of individuals
from one subpopulation to another. With the airline transportation
system being the main and fastest mean of connection between
different parts of the world, previous works have included an
always increasing portion of the worldwide airport network in the
metapopulation approaches considered. Indeed, even in continen-
tal Europe that possesses one of the most structured and modern
railway network, long-range railway traffic across countries is just
one-tenth of the corresponding airline traffic [14]. From samples

with 52 airports in Ref. [38,22], 105 airports in Ref. [12], 155 in
Ref. [16], 500 in Ref. [29], up to the complete International Air
Transport Association (IATA) [30] and Official Airline Guide (OAG
[35]) databases incorporated in GLEaM [9,2]. Samples of the world-
wide airport network usually correspond to the largest airports, the
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ig. 1. GLEaM, GLobal Epidemic and Mobility model. The world surface is represe
ssigned to the closest airport. Geographical census areas emerge that constitute th
wo mobility layers, the short range commuting layer and the long range air travel

ost connected cities, or the most central ones, and therefore they
ay include a large portion of the total commercial traffic. While

ncluding the largest flows of real-world mobility, these samples
re limited in their ability to capture the entire network informa-
ion for a detailed description of the geotemporal evolution of the
isease on a city by city basis. The overall paths of spreading may
e fairly well reproduced [4], but models based on samples would
ail if the question under study focuses on the description of the
pidemic behavior at a higher level of detail, such as e.g., country
r city level, due to the lack of data on connections and travel fluxes.
n addition, the accuracy in reproducing the spreading pattern of
iseases is largely challenged by the absence of large fluctuations

n the topology of the airline network and in the traffic volumes,
nd of correlations and non-trivial loops that are responsible for
he definition of the geotemporal propagation in the real world [9].
he increase of resolution imposes different requirements in the
efinition of the population distribution and of additional means
f transportation that may become relevant at this level of detail.
revious works considered cities with no geographical reference
hose population was obtained from national and international

ity population databases [29,12,16,9,22], and did not consider
oupling effects other than air transportation. The GLEaM computa-
ional model presented here takes into account also the short range

obility to capture the daily population displacements from a given
eographical census area to its neighboring one. In addition, the
odel already integrates long-range railway connections indexed

y the OAG database and we are making a progressive introduction
f detailed railway networks in specific countries. By integrating
multi-scale mobility layer, GLEaM is therefore the world-wide
odel that consider a finer description of the evolution of the epi-

emic behavior, with the air travel dictating the pathways of the
isease through the large geographical areas, whereas the daily
hort-range displacements control the timing of spreading within
ocalized regions [2].

. GLEaM computational model definition

The global epidemic and mobility structured metapopulation
GLEaM) model is based on a metapopulation approach in which the
orld is divided into geographical regions defining a subpopula-
ion network where connections among subpopulations represent
he individual fluxes due to the transportation and mobility infras-
ructure. GLEaM integrates three different data layers (see Fig. 1).
he population layer is based on the high-resolution population
atabase of the “Gridded Population of the World” project of
n a grid-like partition where each cell – corresponding to a population value – is
populations of the metapopulation model. The demographic layer is coupled with

Columbia University [6,7] that estimates the population with a
granularity given by a lattice of cells covering the whole planet at
a resolution of 15 min × 15 min of arc. The transportation mobility
layer integrates air travel mobility obtained from the International
Air Transport Association (IATA) [30] and OAG [35] databases that
contain the list of worldwide airport pairs connected by direct
flights and the number of available seats on any given connection,
and commuting patterns as obtained from data collected and ana-
lyzed from more than 30 countries in 5 continents. The combination
of the population and mobility layers allows for the subdivision of
the world into georeferenced census areas defined with a Voronoi
tessellation procedure around transportation hubs. GLEaM simu-
lates the mobility of individuals from one subpopulation to another
by a stochastic procedure in which the number of passengers of
each compartment traveling from a subpopulation j to a subpopula-
tion � is an integer random variable defined by a stochastic process
defined on the basis of real mobility data. Short range commuting
between subpopulations is modeled with a time scale separation
approach that defines the effective force of infections in connected
subpopulations. Superimposed on the worldwide population and
mobility layers is the epidemic model that defines the disease and
population dynamics. The infection dynamics takes place within
each subpopulation and assumes the classic compartmentalization
in which each individual is classified by one of the discrete states
such as susceptible, latent, infectious symptomatic, infectious non-
symptomatic or permanently recovered/removed. In the following
sections we provide a detailed presentation of each data layer and
of the basic equations that defines the computational model.

3.1. Population layer

The dataset of the “Gridded Population of the World” and the
“Global Urban-Rural Mapping” projects [6,7] run by the Socioeco-
nomic Data and Application Center (SEDAC) of Columbia University
divides the surface of the world into a grid of cells that can have
different resolution levels. Each of these cells has assigned an esti-
mated population value. Out of the possible resolutions, we have
opted for cells of 15 min × 15 min of arc to constitute the basis of
our model. This corresponds to an area of each cell approximately
equivalent to a rectangle of 25 km × 25 km along the Equator. The

dataset comprises 823,680 cells, of which 250,206 are populated.
In order to define the subpopulations that constitute the metapop-
ulation structure of our model we have performed a Voronoi-like
tessellation of the Earth surface centered around the airports of
the IATA database. In particular, we identify 3362 subpopulations
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ig. 2. Population database and Voronoi tessellation around main transportation hub
o a population values – is assigned to the closest airport. Geographical census area

entered around indexed IATA airports in 220 different countries.
ince the coordinates of each cell center and those of the airports
re known, the distance between the cells and the airports can be
alculated. We assign each cell to the subpopulation associated to
he closest airport that satisfies the following two conditions: (i)
ach cell is assigned to the closest airport within the same coun-
ry and (ii) the distance between the airport and the cell does not
xceed 200 km. This cutoff naturally emerges from the distribution
f distances between cells and closest airports, and it is introduced
o avoid that in barely populated areas such as Siberia we can gener-
te geographical census areas thousands of kilometer wide but with
lmost no population. It also corresponds to a reasonable upper
utoff for the ground traveling distance expected to be covered to
each an airport before traveling by plane.

In addition, the tessellation procedure needs to take into account
hat there exist urban areas served by more than one airport. Exam-
les include London with up to six airports, Paris with two, New
ork City with three and others. This condition is relevant in the
essellation, as the aim of the procedure is to provide geographi-
al census areas that will correspond to the subpopulation of the
etapopulation model, where homogeneous mixing is going to be

ssumed. Given that the mixing between individuals in a given
rban area is expected to be high, independently from their choice
f the airport for mobility reasons, we first need to proceed to the
ggregation of the groups of airports that serve the same urban
rea, prior to tessellation. We have searched for groups of airports
ocated close to each other and manually processed the identi-
ed groups to select those belonging to the same urban area. The
irports of the same group are then aggregated in a single “super-
ub”. An example with the final result of the Voronoi tessellation
rocedure with cells and airports can be seen in Fig. 2.

.2. Mobility layers

The geographical census areas obtained with the tessellation
rocedure define the basic subpopulations of the GLEaM metapop-
lation structure. The spatio-temporal patterns of the disease
preading are however associated to the mobility flows that couple

ifferent subpopulations. These flows constitute the mobility data

ayer that is represented as a network of connections among sub-
opulations that identifies the number of individuals that goes from
ne subpopulation to the others. The mobility network is made
y different kind of mobility processes from short-range commut-
world surface is represented in a grid-like partition where each cell – corresponding
rge that constitute the subpopulations of the metapopulation model.

ing to intercontinental flights with time-scale and traffic volumes
that span several orders of magnitude. In the following we discuss
the data integration process and the construction of this multiscale
mobility network.

3.2.1. Worldwide Airport Network
The Worldwide Airport Network (WAN) is composed of 3362

commercial airports indexed by the IATA located in 220 different
countries. The database contains the number of available seats per
year for each direct connection between a pair of these airports.
The coverage of the dataset is estimated to be 99% of the global
commercial traffic. The WAN can be seen as a weighted graph com-
prising 16,846 edges whose weight, ωj�, represents the passenger
flow between airports j and �. The network shows a high degree of
heterogeneity both in the number of destinations per airport and
in the number of passengers per connection [9,3,10,11].

3.2.2. Commuting networks
Our commuting databases have been collected from the Offices

of Statistics of 30 countries in 5 continents. The full dataset com-
prehends more than 80,000 administrative regions and over five
million commuting flow connections between them (see [2]). The
definition of administrative unit and the granularity level at which
the commuting data are provided vary enormously from coun-
try to country. For example, most European countries adhere to a
practice that ranks administrative divisions in terms of geocoding
for statistical purposes, the so called Nomenclature of Territorial
Units for Statistics (NUTS) going from level 1 to 3 plus the Local
Administrative Units (LAU) corresponding to the municipalities
and that can be further subdivided in Wards (LAU 2). In most of
the cases, we obtained the commuting data at the LAU level 1 or
2. The US or Canada, on the other hand, have different standards
and report commuting at the level of counties. Not only there are
clear differences across countries in the definition of the admin-
istrative divisions, but even within the same country the actual
extension, shape, and population of the administrative divisions
can be strongly heterogeneous, being a result of historical and
administrative reasons (Table 1).
In order to overcome the differences in spatial resolution of
the commuting data across different countries, we define a world-
wide homogeneous standard for GLEaM. We used the geographical
census areas obtained from the Voronoi tessellation as the ele-
mentary units to define the centers of gravity for the process of
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Table 1
Commuting networks in each continent. Number of countries (N), number of admin-
istrative units (V) and inter-links between them (E) are summarized.

Continent N V E

Europe 17 65,880 4,490,650
North America 2 6986 182,255
Latin America 5 4301 102,117
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Table 2
Transitions between compartments and their rates.

Transition Type Rate

Sj → Lj Contagion �j

Lj → Ia
j

Spontaneous εpa

Lj → It
j

ε(1 − pa)pt

Lj → Int
j

ε(1 − pa)(1 − pt)

F
c
e
c
i

Asia 4 4355 380,385
Oceania 2 746 30,679

Total 30 82,268 5,186,186

ommuting. This allows to deal with self-similar units across the
orld with respect to mobility as emerged from the tessellation and
ot country specific administrative boundaries. We have therefore
apped the different levels of commuting data into the geographi-

al census areas formed by the Voronoi-like tessellation procedure
escribed above. The mapped commuting flows can be seen as a
econd transport network connecting subpopulations that are geo-
raphically close. This second network can be overlaid to the WAN
n a multi-scale fashion to simulate realistic scenarios for disease
preading. The network exhibits important variability in the num-
er of commuters on each connection as well as in the total number
f commuters per geographical census area. Being the census areas
tatistically homogeneous we can also extract a general statistical
aw that allows for the synthetic generation of commuting net-

orks in countries where real data are not available. A full account
f the commuting data obtained across different continents and
heir statistical analysis can be found in Ref. [2].

.3. Disease model

Each geographical census area corresponds to a subpopulation
n the metapopulation model. The infection dynamics within each
ubpopulation is governed by a disease specific compartmental
odel in which we assume homogeneous mixing in the popula-

ion. Although the model can use any compartmental structure,
or the sake of clarity we will carry on our discussion by using
he explicit example of a typical influenza-like illness (ILI) where
e consider a Susceptible-Latent-Infectious-Recovered (SLIR) com-
artmental scheme. In Fig. 3, a diagram of the compartmental
tructure with transitions between compartments is shown. The
ontagion process, i.e., generation of new infections, is the only
ransition mechanism which is altered by short-range mobility,
hereas all the other transitions between compartments are spon-
aneous and remain unaffected by the commuting. The rate at
hich a susceptible individual in subpopulation j acquires the

nfection, the so called force of infection �j, is determined by inter-
ctions with infectious persons either in the home subpopulation j
r in its neighboring subpopulations on the commuting network. In

ig. 3. Compartmental structure of the epidemic model within each subpopulation. A susc
ontracts the infection at rate ˇ or rˇˇ, respectively, and enters the latent compartmen
ach latent individual becomes infectious, entering the symptomatic compartments with
ases are further divided between those who are allowed to travel (with probability pt)
ndividuals recover permanently with rate �. All transition processes are modeled throug
Ia
j

→ Rj �

It
j

→ Rj �

Int
j

→ Rj �

general, the force of infection is assumed to follow the mass action
principle for which the infection rate is � = ˇI / N where ˇ is the
infection transmission rate and I / N is the density of infected indi-
viduals in the population. In the case of asymptomatic individuals
the force of infection is usually reduced by a factor rˇ. In the case of
multiple interacting subpopulations and different classes of infec-
tives the force of infection will be the sum of different contributions
as reported in Section 4.3.

Given the force of infection �j in subpopulation j, each person
in the susceptible compartment (Sj) contracts the infection with
probability �j�t and enters the latent compartment (Lj), where �t
is the time interval considered. Latent individuals exit the compart-
ment with probability ε�t, and transit to asymptomatic infectious
compartment (Ia

j
) with probability pa or, with the complemen-

tary probability 1 − pa, become symptomatic infectious. Infectious
persons with symptoms are further divided between those who
can travel (It

j
), probability pt, and those who are travel-restricted

(Int
j

) with probability 1 − pt. All the infectious persons permanently
recover with probability ��t, entering the recovered compartment
(Rj) in the next time step. All transitions and corresponding rates
are summarized in Table 2 and in Fig. 3.

4. Epidemic and mobility dynamics

Once the mobility data layers and the disease dynamics has
been defined, the number of individuals in each compartment [m]
and subpopulation j follows a discrete and stochastic dynamical
equation that reads as

X[m]
j

(t + �t) − X[m]
j

(t) = �X[m]
j

+ �j([m]) (1)

where the term �X[m]
j

represents the change due to the compart-

ment transitions induced by the disease dynamics and the transport
operator �j([m]) represents the variations due to the traveling
and mobility of individuals. The latter operator takes into account
the long-range airline mobility and sets the minimal time scale of
integration at 1 day. The mobility due to the commuting flows is

eptible individual in contact with a symptomatic or asymptomatic infectious person
t where he is infected but not yet infectious. At the end of the latency period ε−1,
probability 1 − pa or becoming asymptomatic with probability pa . The symptomatic
and those who would stop traveling when ill (with probability 1 − pt). Infectious
h multinomial processes.
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ncluded in the model by an effective force of infection obtained
sing a time scale separation approximation as detailed in the fol-

owing sections. The term �X[m]
j

can be written as a combination
f a set of operators Dj([m], [n]). Each Dj([m], [n]) determines the
umber of transitions from compartment [m] to [n] occurring in �t
nd is simulated as a random variable extracted from a multinomial
istribution. The change �X[m]

j
is then given by the sum

X[m]
j

=
∑
[n]

{−Dj([m], [n]) + Dj([n], [m])}. (2)

As a concrete example let us consider the evolution of the latent
ompartment. There are three possible transitions from the com-
artment: transitions to the asymptomatic infectious, the traveling
nd the non-traveling symptomatic infectious compartments. The
lements of the operator acting on Lj are extracted from the multi-
omial distribution

rMultin(Lj(t), pLj→Ia
j
, pLj→It

j
, pLj→Int

j
), (3)

etermined by the transition probabilities

pLj→Ia
j

= εpa�t,

pLj→It
j

= ε(1 − pa)pt�t,

pLj→Int
j

= ε(1 − pa)(1 − pt)�t,

(4)

nd by the number of individuals in the compartment Lj(t) (its size).
ll these transitions cause a reduction in the size of the compart-
ent. The increase in the compartment population is due to the

ransitions from susceptibles into latents. This is also a random
umber extracted from a binomial distribution

rBin(Sj(t), pSj→Lj
), (5)

iven by the chance of contagion

Sj→Lj
= �j�t, (6)

nd a number of attempts equal to the number of susceptibles Sj(t).
fter extracting these numbers from the appropriate multinomial
istributions, we can calculate the change �Lj(t) as

Lj(t) = −
[
Dj(L, Ia) + Dj(L, It) + Dj(L, Int)

]
+ Dj(S, L). (7)

.1. The integration of the transport operator

The transport operator is defined by the airline transportation
ata which provides the number of available seats ωj� between
ach pair of airports (j, �). The operator is in general affected by
uctuations coming from the fact that the occupancy rate of the
irplanes is not 100%. To take into account such fluctuations, we
ssume that on each connection (j, �) the flux of passengers at time
is given by a stochastic variable

˜ j� = ωj�[˛ + 	(1 − ˛)], (8)

here ˛ denotes the average occupancy rate of the order of 70–90%
rovided by IATA and 	 is a random number drawn uniformly in
he interval [ − 1, 1] at each time step. The number of individuals

n the compartment [m] traveling from the subpopulation j to the
ubpopulation � is an integer random variable, in that each of the
[m]
j

potential travelers has a probability pj� = ω̃j��t/Nj to go from j

o �. In each subpopulation j the numbers of individuals 
j� traveling
n each connection j → � at time t define a set of stochastic variables
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{
j�}, which follows the multinomial distribution

P({
j�})=
X[m]

j
!

(X[m]
j

−
∑

�


j�)!
∏

�


j�!

∏
�

p
j�
j� ×

(
1−
∑

�

pj�

)(X[m]
j

−
∑

�


j�)

,

(9)

where (1 −∑ �pj�) is the probability of not traveling, and (X[m]
j

−∑
�
j�) stands for the number of non-traveling individuals of the

compartment [m]. The multinomial distribution provides the cor-
rect probability for traveling individuals leaving j to distribute
across the possible connections according to {pj�}. We use standard
numerical subroutines to generate random numbers of travelers
following these distributions. The transport operator in each sub-
population j is therefore written as

�j([m]) =
∑

�

(
�j(X
[m]
�

) − 
j�(X[m]
j

)), (10)

where the mean and variance of the stochastic variables are
〈
j�(X[m]

j
)〉 = pj�X[m]

j
and Var(
j�(X[m]

j
)) = pj�(1 − pj�)X[m]

j
. Direct

flights as well as connecting flights up to two-legs flights can be
considered. It is worth remarking that on average the airline net-
work flows are balanced so that the subpopulation Nj are constant
in time, e.g.,

∑
[m]�j([m]) = 0.

4.2. Time-scale separation and the integration of the commuting
flows

The GLEaM model combines the infection dynamics with long-
and short-range human mobility. Each of these dynamical pro-
cesses operates at a different time scale. The inverse of the rates of
the disease dynamics define the time scale of the stochastic process
that we can see as the average individual’s permanence in a given
compartment. For ILIs there are two important intrinsic time scales,
given by the latency period ε−1 and the duration of infectiousness
�−1, both larger than 1 day. The long-range mobility given by the
airline network has a time scale of the order of 1 day, while the com-
muting takes place in a time scale of approximately �−1 ∼ 1 / 3 day.
The explicit implementation of the commuting in the model thus
requires a time interval shorter than the minimal time of airline
transportation data. To overcome this problem, we use a time-
scale separation technique, in which the short-time dynamics is
integrated into an effective force of infection in each subpopulation.

We start by considering the temporal evolution of subpopula-
tions linked only by commuting flows and evaluate the relaxation
time to an equilibrium configuration. Consider the subpopulation j
coupled by commuting to other n subpopulations. The commuting
rate between the subpopulation j and each of its neighbors i will be
given by �ji. The return rate of commuting individuals is set to be
�. Following the work of Sattenspiel and Dietz [39], we can divide
the individuals original from the subpopulation j, Nj, between Njj(t)
who are from j and are located in j at time t and those, Nji(t), that
are from j and are located in a neighboring subpopulation i at time
t. Note that by consistency

Nj = Njj(t) +
∑

i

Nji(t). (11)
The rate equations for the subpopulation size evolution are then

∂tNjj = −
∑

i

�jiNjj(t) + �
∑

i

Nji(t),

∂tNji = �jiNjj(t) − �Nji(t).
(12)
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y using condition (11), we can derive the closed expression

tNjj + (� + �j)Njj(t) = Nj�, (13)

here �j denotes the total commuting rate of population j,
j =
∑

i�ji. Njj(t) can be expressed as

jj(t) = e−(�+�j)t

(
Cjj + Nj�

∫ t

0

e(�+�j)s ds

)
, (14)

here the constant Cjj is determined from the initial conditions,
jj(0). The solution for Njj(t) is then

jj(t) = Nj

1 + �j/�
+
(

Njj(0) − Nj

1 + �j/�

)
e−�(1+�j/�)t . (15)

e can similarly solve the differential equation for the time evolu-
ion of Nji(t)

ji(t) = Nj�ji/�

1 + �j/�
− �ij

�j

(
Njj(0) − Nj

1 + �j/�

)
e−�(1+�j/�)t

+
[

Nji(0) − Nj�ji/�

1 + �j/�
+ �ij

�j

(
Njj(0) − Nj

1 + �j/�

)]
e−�t .

(16)

he relaxation to equilibrium of Njj and Nji is thus controlled by
he characteristic time [� (1 + �j / �)]−1 and �−1 in the exponentials,
espectively. The former term is dominated by 1 / � if the relation
� �j holds. In our case, �j =

∑
iωji / Nj, that equals the daily total

ate of commuting for the population j. Such rate is always smaller
han one since only a fraction of the local population is commuting,
nd it is typically much smaller than � � 3 day−1 to 10 day−1. There-
ore the relaxation characteristic time can be safely approximated
y 1 / �. This time is considerably smaller than the typical time for
he air connections of one day and hence we can approximate the
ubpopulations Njj(t) and Nji(t) with their equilibrium values,

jj = Nj

1 + �j/�
and Nji = Nj�ji/�

1 + �j/�
. (17)

his approximation, originally introduced by Keeling and Rohani
32], allows us to consider each subpopulation j as having an effec-
ive number of individuals Nji in contact with the individuals of the
eighboring subpopulation i. In practice, this is similar to separate
he commuting time scale from the other time scales in the problem
disease dynamics, traveling dynamics, etc.). While the approxi-

ation holds exactly only in the limit � → ∞, it is good enough as
ong as � is much larger than the typical transition rates of the dis-
ase dynamics. In the case of ILIs, the typical time scale separation
etween � and the compartments transition rates is close to one
rder of magnitude or even larger. Eq. (17) can be then generalized
n the time scale separation regime to all traveling compartments
m] obtaining the general expression

[m]
jj

=
X[m]

j

1 + �j/�
and X[m]

ji
=

X[m]
j

1 + �j/�

�ji

�
, (18)

hile X[m]
jj

= X[m]
j

and X[m]
ji

= 0 for all the other compartments
hich are restricted from traveling. These expressions will be used

o obtain the effective force of infection taking into account the
nteractions generated by the commuting flows.

.3. Effective force of infection
The force of infection �j that a susceptible individual of a sub-
opulation j sees can be decomposed into two terms: �jj and �ji.
he component �jj refers to the part of the force of infection which
s due to interactions among individuals in j. While �ji indicates the
onal Science 1 (2010) 132–145

force of infection acting on susceptibles of j during their commut-
ing travels to a neighboring subpopulation i. The effective force of
infection can be estimated by summing these two terms weighted
by the probabilities of finding a susceptible from j in the different
locations, Sjj / Sj and Sji / Sj, respectively. Using the time-scale sepa-
ration approximation that establishes the equilibrium populations
of Eq. (18), we can write

�j = �jj

1 + �j/�
+
∑

i

�ji�ji/�

1 + �j/�
. (19)

We will focus now on the calculation of each term of the previous
expression. The force of infection (see Table 2) occurring in a sub-
population j is due to the local infectious persons staying at j or to
infectious individuals from a neighboring subpopulation i visiting
j and so we can write

�jj = ˇj

N∗
j

(
Int
jj + It

jj + rˇIa
jj

)
+ ˇj

N∗
j

∑
i

(
Int
ij + It

ij + rˇIa
ij

)
, (20)

where ˇj is introduced to account for the seasonality in the infec-
tion transmission rate (if the seasonality is not considered, it is a
constant), and N∗

j
stands for the total effective population in the

subpopulation j. By definition, Int
jj

= Int
j

and Int
ji

= 0 for j /= i. If we
use the equilibrium values of the other infectious compartments
(see Eq. (18)), we obtain

�jj = ˇj

N∗
j

[
Int
j +

It
j
+ rˇIa

j

1 + �j/�
+
∑

i

It
i
+ rˇIa

i

1 + �i/�
�ij/�

]
. (21)

The derivation of �ji follows from a similar argument yielding:

�ji = ˇi

N∗
i

(
Int
ii + It

ii + rˇIa
ii

)
+ ˇi

N∗
i

∑
� ∈ �(i)

(
Int
�i + It

�i + rˇIa
�i

)
, (22)

where �(i) represents the set of neighbors of i, and therefore the
terms under the sum are due to the visits of infectious individu-
als from the subpopulations �, neighbors of i, to i. By plugging the
equilibrium values of the compartment into the above expression,
we obtain

�ji = ˇi

N∗
i

⎡
⎣Int

i + It
i
+ rˇIa

i

1 + �i/�
+
∑

� ∈ �(i)

It
�

+ rˇIa
�

1 + ��/�
��i/�

⎤
⎦ . (23)

Finally, in order to have an explicit form of the force of infection we
need to evaluate the effective population size N∗

j
in each subpopula-

tion j, i.e., the actual number of people at the location j. The effective
population is N∗

j
= Njj +

∑
iNij , that in the time-scale separation

approximation reads

N∗
j = Int

j +
Nj − Int

j

1 + �j/�
+
∑

i

Ni − Int
i

1 + �i/�
�ij/�. (24)

Note that in these equations all the terms corresponding to com-
partments have an implicit time dependence.

By inserting �jj and �ji into Eq. (19), it can be seen that the
expression for the force of infection includes terms of zeroth, first
and second order on the commuting ratios (i.e., �ij / �). These three
term types have a straightforward interpretation: the zeroth order
terms represent the usual force of infection of the compartmental
model with a single subpopulation. The first order terms account

for the effective contribution generated by neighboring subpopula-
tions, and is due to the contacts between susceptible individuals of
subpopulation j and infectious individuals of neighboring subpopu-
lations i. This can occur in two ways – either susceptible individuals
of j visiting i or infectious individuals of i visiting j. The second
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Fig. 4. Schematic representation of the subdivision of the population in each geo-
graphical census area. The population in each geographical census area is divided
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nto partial populations Nxy , where x represents the subpopulation of residence and
represents the subpopulation of the actual location at time t. Three subpopulations
re shown – i, j, � – to represent the various contributions to the force of infection
see Eq. (19)).

rder terms correspond to an effective force of infection generated
y the contacts of susceptible individuals of subpopulation j meet-

ng infectious individuals of subpopulation � (neighbors of i) when
oth are visiting subpopulation i (see Fig. 4). This last term is very
mall in comparison with the zeroth and first order terms, typi-
ally around two order of magnitudes smaller, and in general can
e neglected.

.4. Seasonality modeling

To model seasonal variations we follow the approach of Cooper
t al. [12] and scale the basic reproduction ratio R0 by a seasonal
unction, si(t),

i(t) =
[(

1 − Rmin

Rmax

)
sin
(

2�

365

(
t − tmax,i

)
+ �

2

)
+ 1 + Rmin

Rmax

]
1
2

,

(25)

here i stands for the North or South hemispheres. This function
s identically equal to 1.0 in the tropical regions. tmax,i is the time
orresponding to the maximum seasonal effect, Jan 15 in the North
nd 6 months later in the South. Seasonality has a dual effect, it
ncreases the value of R0 up to Rmax = ˛maxR0 with ˛max ≡ 1.1 [26]
nd reduces it down to Rmin = ˛minR0.

.5. Age structure

In order to achieve refined analysis including the impact of an
pidemics on different age groups, it is possible to include a gener-
lization of the basic formalism that takes into account the presence
f different contact rates among individuals belonging to different
ge bracket or more generally specific population groups. We start
y distinguishing among different age groups with varying contact
ates by using the results by Wallinga et al. [43]. In 2006, Wallinga
t al. [43] measured the contact rates using a group of 1813 Dutch
urvey participants. With such data it is possible to write a con-
act matrix M, describing how many interactions an individual in
ne class has with individuals in a different age group. The main

haracteristic of the contact matrix is its asymmetry. This is easily
xplained if, for example, one considers children and adults. Chil-
ren almost always live with adults, but adults do not always live
ith children. In order to obtain the effective rate of infection, we
ust multiply the probability of infection by appropriately rescaled
onal Science 1 (2010) 132–145 139

rates describing the contacts between different age groups. A full
description of the generalization of the formalisms is reported in
Appendix A. While the theoretical and computational formalisms
are ready to be generalized to the inclusion of age classes in the
system, the main limitation to proceed along this direction is in the
lack of data. Reliable information can be obtained on the age struc-
ture of most of the countries in the world, however detailed data
on the contact matrix are limited to specific countries or settings,
therefore a data-driven generalization to the whole world is still
not available.

5. Algorithms, the simulator and its implementation

The GLEaM simulation toolbox is implemented in a modular
way. Each module performs a single function, and they can be com-
bined in different ways to include or remove specific features. In
Algorithm 1 we outline the general program flow of a basic GLEaM
run.

Algorithm 1. Generic GLEaM program flow.
Parse model file
Load data input files:

population database
commuting
flight networks

foreach timestep t:
do

Flight connections (See Algorithm 2)
Infect (See Algorithm 3)
Aggregate results for each detail level.

done

Generate final output

5.1. Long distance travel

Each time step represents a full day. At the start of the time
step, we use the flight network to move travelers to their desti-
nation using Algorithm 2. Travel is assumed to be instantaneous
with no transitions being possible on route. Performing this step
at the start of the “day”, guarantees that incoming travelers will
contact with the local inhabitants during that day. As a conse-
quence, the arrival time for the infection is the day at which the first
infected traveler arrives and this seed individual is considered to
have a full day chance of infecting others. The probability of travel-
ing changes from day to day through fluctuations in the occupancy
rate of flights, as shown in Algorithm 2, where ˛ represents the
average occupancy rate of the plane, and 	 is a stochastic random
variable uniformly distributed between [ − 1, 1]. The Flight module
can be customized in order to consider the effects of generalized or
location specific airline traffic reductions.

Algorithm 2. Long distance mobility.
foreach city i:
do

foreach neighbor j ∈ v (i):
do

Calculate traffic: ω̃ij = ωij[˛ + 	 (1 − ˛)]

Traveling probability: pij = ω̃ij
Ni

done

distribute travelers among neighbors
updated population matrix

end
5.2. Compartment transitions

The GLEaM framework is conceived in a generic way that facil-
itates the simulation of an arbitrary compartmental model that is
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Fig. 5. Full illustration of the procedure used for the GLEaM simulation engine. The
left column represents input databases and the right column the data structures that
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iven as part of the input. The infection module is completely sep-
rated from the other modules (like Flight and Aggregation). The
odule can be customized in order to simulate the effect of pol-

cy measures that modify the transmission rates during a specific
eriod of time.

The epidemic model description is processed to generate a
irected multigraph, where each node represents a compartment
nd each edge a transition, following the representation of Fig. 3.
ach edge is given a type, a weight and several other attributes.
he type identifies whether the edge corresponds to a contagion or
spontaneous transition and the weight is the rate of transition.

n the case of contagion transitions, the infectious agent is also
dentified, as there may be multiple infectious compartments as
hown by Fig. 3. This structure provides a convenient way of inter-
ally representing arbitrarily complex models as well as facilitating
n efficient implementation. The edges contain all the information
ecessary to calculate the transition probabilities that can then be
sed directly as arguments of the multinomial function that calcu-

ates the number of individuals making the transition.

lgorithm 3. Compartment transitions.
foreach city i:
do

calculate effective populations due to commuting

foreach initial compartment x:
do

Update transition probability to compartment y using Eq. (22) and Eq. (24).
For seasonal transitions, scale transition rate by s (t) (Eq. (25))

done

Move population between compartments using a multinomial
done

.3. Aggregation and post-processing

The output produced by each run includes the population of each
ompartment for each census area at each time step and the num-
er of transitions along each of the edges in the transition graph. The
nal step performed after each simulated day is a partial aggrega-
ion of the results, in order to both simplifying the post processing
equired to obtain useful results and reducing the already con-
iderable amount of output generated for each run. At this point
n the simulation, the populations of each census area and each
ompartment have already been updated and several quantities of
nterest can be calculated. In particular, we calculate the number
f secondary cases generated during this specific time step and the
urrent incidence at each of the following aggregation levels:

Census area
Country
Region
Continent
Hemisphere
Globe

n the case of some countries, we also consider within-country
ivisions, such as US states and Australian provinces.

After the run is finished, the output data files are post processed
y a series of Python scripts to generate the analysis, figures and
nimations that are finally used. The advantage of decoupling sim-
lation and analysis is in the flexibility it gives in tailoring the whole

rocess. While some post processing steps (like the generation of
pidemic profiles, arrival times and ArgGIS illustrations) are almost
lways considered, others can be added, removed or customized
or specific situations. The full simulation process, containing all
he steps described above, is illustrated schematically in Fig. 5.
are generated. Program flow occurs along the center. The three steps in the center
box are repeated for each simulated day.

6. GLEaM at work: simulation of 2001–2002 seasonal
influenza A

In order to present a case study for the use of the GLEaM sim-
ulator we consider the spreading of seasonal influenza worldwide.
Here we want to show how the model calibration may proceed by
using real data from the surveillance and monitoring systems and
what parameters are crucial in the description of the disease spread.
Every year, seasonal influenza circulates globally and infect from 5%
to 15% of the population, resulting in 3–5 million severe cases and
∼500,000 deaths worldwide [42,45]. For the sake of simplicity, we
focus on one influenza season with one dominant strain, in order to
neglect complications arising from the interplay of different strains.
This makes the 2001–2002 season a good candidate, which satis-
fies these criteria, among all the seasons from 1998 to 2006. In

the Northern hemisphere, the season 2001–2002 has less than 5%
mean proportion of annual A/H3N2 isolates, while in 2001–2002
this proportion is above 60% [20].
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Fig. 6. Monte Carlo latin sampling. �2 values as functions of effective reproduction
ratio (Reff) and seeding date (t0) of simulated epidemics obtained by 2000 stochastic

sultation rate (per 100,000 population or per 1000 patient visits)
which is usually conducted by physicians. For selected countries
having only one type of dominant strain, the percentage of ILI is
also a good indicator of influenza activity for the seasonal activity.

Table 3
Data sources for ILI% in the 2001/2002 influenza season.

Country Type Data source

US A/H3N2 CDC
Canada A/H3N2 PHA Canada
D. Balcan et al. / Journal of Com

.1. Model calibration and simulation

The main issue in the simulation of the influenza is the
arametrization of the model in terms of the transmission rate
nd the initial condition for the circulation of a given strain at the
lobal level. The origin of annual influenza circulation is still an
nknown issue [37], however, from past experiences, new variants
f influenza often originate in East-Southeast Asia [37], or Southeast
hina [13,40,41]. For season 2001–2002, according to the epidemi-
logical records [44], Hong Kong is the only country/region in SE
sia having sporadic A/H3 influenza activity during June and July
001. We therefore choose Hong Kong as the source of the influenza
train and explore possible starting dates between June and July.

e further assume that a fraction equal to 10−5 of the city’s popula-
ion is latent, consistently with the literature and with the specific
hoice for the same season in Ref. [26]. In the case of influenza,
e can implement the compartmental structure reported in Fig. 3.

or the parameters of the model, we consider a latent period of
−1 = 1.1 days, and infectious period of �−1 = 2.95 days. The aver-
ge generation interval for our choice is around 4 days, a value
lose to published estimates for the A/H3N2 [5]. Also in agreement
ith the literature, we assume that only a fraction of � = 60% of the
orld population is susceptible to the circulating strain [26]. For

he seasonality rescaling, we use the same seasonal rescaling as in
ef. [1]. We fix ˛max and ˛min at 1.1 and 0.1, respectively, to reflect
he seasonal variabilities of influenza transmission.

The transmissibility of the disease is measured by the basic
eproduction number R0 which is defined as the average number of
nfected cases generated by the introduction of a single infectious
ndividual into a fully susceptible population. For the compartmen-
alization used here, R0 can be obtained in each subpopulation by
valuating the largest eigenvalue of the Jacobian or next genera-
ion matrix of the infection dynamics in a disease-free state [15,28],
ielding

0 = ˇ�−1(1 − pa + rˇpa). (26)

iven the parameters pa and rˇ, the value of R0 depends on the
ransmission rate ˇ that fixes the reference reproductive num-
er in each subpopulations. For seasonal influenza, however, since
he fraction of initially susceptible population is not one, the
eproductive number must be rescaled by the proportion of suscep-
ible individuals and we define an effective reproductive number
eff = �R0.

In order to find a best estimate of the transmissibility and ini-
ial start date t0, we perform simulations of the model for varying
alues of these two parameters and compare the results with the
mpirical data on the influenza activity peak in the French regions.
he French Sentinelles Network is a surveillance system reported
y voluntary and unpaid general practitioners (GP), which keeps
weekly record of ILI consultations since 1984 [23]. From the

ata, we can obtain for each French region the time of the activ-
ty peak temp peak. We then perform a latin square sampling in the
hase space of the parameters Reff and t0, constructing the surface
epresenting the �2 values obtained by comparing the empirical
eak times with the average simulated activity peak times tsim peak

i
btained by analyzing 2,000 stochastic GLEaM realizations for each
ampled point. This Monte Carlo latin sampling procedure is com-
utationally intensive as for each sampled point 2000 realization of
he epidemic propagation worldwide must be generated. We have
pted for a trade-off in the accuracy and computational cost sam-
lings the phase space with a resolution �Reff = 0.03 and �t0 = 7

ays. The best fit for the initial condition and the transmissibility is
ssociated with the minimum of the �2 surface. Fig. 6 reports the
2 surface as a function of Reff and seeding date t0. The best fit range

or Reff is between 1.47 and 1.53 with the initial date between late
une and early July, depending on the Reff. From the analysis of the
runs for each pair of parameter values. Activity peak times of ILI consultations in
the various French regions have been selected as probe and were compared with
simulation results to obtain �2. As seen in the figure, there are 4 local minimums.
Parameter values chosen for the analysis in Fig. 7 are shown by the crosshairs.

surface, we find a best estimate corresponding to Reff = 1.50 and t0 =
July 11. A more accurate analysis with confidence interval is needed
in order to provide a full discussion of these epidemiological results.
This is however beyond the scope of this paper, where we want only
to provide a practical example of the GLEaM implementation.

The best estimate of the parameters is obtained by using data
only from a single country, in this case France. In order to provide
an example of the accuracy of the GLEaM model in reproducing the
spatio-temporal patterns of the disease spreading, we can com-
pare the numerical results obtained with the parameters fitted
in France with empirical data in several countries where reliable
surveillance data is available. We have chosen a set of countries
for which the reported dominant strain is A/H3N2 with a sufficient
number of reported cases. Data is obtained from either the national
public health agencies or the regional organizations. The full list of
selected countries is shown in Table 3.

In Fig. 7, we report the activity peaks for the selected coun-
tries and compare our predictions with the 2001–2002 weekly
surveillance data. The simulation and empirical data show a good
agreement in most of the countries and regions. All data are nor-
malized to 1, which guarantees that activities are shown on the
same scale. For the simulated data, the activity peaks are reported
with median values from 2000 stochastic simulations, along with
the 95% reference range. For the empirical data, in addition to the
number of laboratory confirmed cases, we also refer to additional
indicators, such as ILI or Acute Respiratory Infection (ARI) con-
UK A/H3N2 ECDC, UK HPA
Portugal A/H3N2 ECDC
Spain A/H3N2 ECDC
Belgium A ECDC
Australia A/H3N2 DHA
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Fig. 7. Comparison of simulation results with the ILI consultations and number of confirmed cases of influenza A(H3N2). Simulations have been run by setting Reff = 1.5 and
seeding date of July 11th, as marked in Fig. 6. In order to obtain epidemic activity timelines, empirical and each of simulated profiles have been normalized to 1. Then the
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ime windows have been evaluated relative to the peak activities in each case. For in
o the time window in which activity is between 60% and 70% of the peak activity. S
etween the predicted and observed cases is striking. It should be noted that param
nabled GLEaM to reproduce the global pattern of the influenza season successfully

able 3 shows the dominant virus type and the data source used for
ndividual countries. While the analysis reported here must be con-
idered only as a simple illustration of the GLEaM implementation,
he results appear to recover with good agreement the main spatio-
emporal pattern of the 2001–2002 season. We want to stress that
he timing of the epidemic spreading across different regions of the
orld is mostly determined by the human mobility patterns that

re integrated in the GLEaM model with great accuracy. The best fit
f the parameters obtained by the timeline of the epidemic in one
r more countries allows the model to self-consistently capture the
obility of infected individuals and case importation that set the

pidemic timeline worldwide.

. Conclusions

Here we have provided a detailed description of the GLEaM sim-
lator that is a discrete stochastic epidemic computational model
ased on a metapopulation approach in which the world is defined

n geographical census areas connected in a network of interactions
y human travel fluxes corresponding to transportation infrastruc-
ures and mobility patterns. Given the multitude of scales and
obility layers existing in the GLEaM model, the process of interest
an be studied on a wide range of scales ranging from small admin-
strative units (counties, municipalities) to worldwide. Although
he GLEaM model has been used in the past in the analysis of
ealistic scenarios and in comparison with real data, also in rela-
, lightest yellow bars of empirical data (lightest gray of simulated data) correspond
tion results correspond to 95% reference range of simulated epidemics. The overlap
alues have been obtained only by fitting the surveillance data in France, which has

tion with H1N1 pandemic, here we have presented for the first
time all the data integration details, models and algorithms imple-
mentation that are under the hood of the GLEaM simulator. It is
also worth noticing that while the model is being developed and
tested in the context of emerging diseases such as new pandemic
strains, it considers different transportation and interaction layers
and distinguishes the mobility modeling from the dynamical pro-
cess mediated by the human dynamics. This allows the integration
of different processes of social contagion that are not necessarily
of biological origin but occurs taking advantage of the individuals
mobility such as information spreading, social behavior, etc. GLEaM
has proved to be very flexible and we are working to make the
GLEaM platform available to the scientific community at large. In
particular we are developing an easy to use interface to the soft-
ware that allows for the simulation and visualization of the spread
of epidemics at a global scale.
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Symmetrized contact matrix. From Ref. [43].
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1–5 6–12 13–19 20–39 40–59 60+
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ppendix A. Generalization including age structure

We now introduce the formalisms that allow for the inclusion of
ifferent contact rates among individuals in different age groups.

While we still make the fundamental assumption that the epi-
emic is governed by a single transmission rate ˇ, we must now
escale it to take into account the different contact rates among
ifferent age groups. The contact matrix M, shown in Table A.1
escribes how many contacts an individual in one class has with

ndividuals in a different age group. Columns correspond to sur-
ey participants, and rows to the people they interacted with. As
n example, we use the data gathered in 2006 by Wallinga et al.
43] who measured the contact rates using a group of 1813 Dutch
urvey participants. For self consistency, we required that the total
umber of interactions between two age groups must be the same.

n other words, so we must have

abNb = mbaNa

ymmetrized matrix values are then given by Cab = mab · N / Na,
here Na is the number of individuals in age group a and N is the

otal number of individuals. Values of Na for both the survey partic-
pants and the entire Dutch population are given in Table A.2 and
he full symmetric matrix C is shown in Table A.3.

While Wallinga considers only 6 age groups, our demographic
ata, as provided by the US Census Bureau [31] is more fine grained.
e make the simplest choice and assume that people are uniformly
istributed within each 5-year compartment, thus combining the
ge groups so that they fit the Wallinga picture.

A change in the way the different populations interact with each
ther necessarily implies a change in the way the epidemic spreads,
equiring modifications to the R0 calculation. We apply the tech-

able A.1
ontact matrix M. From Ref. [43].

Age of contacts Age of survey participants

1–5 6–12 13–19 20–39 40–59 60+

0–5 12.26 2.28 1.29 2.50 1.15 0.83
6–12 2.72 23.77 2.80 3.02 1.78 1.00
13–19 2.00 3.63 25.20 5.70 4.22 1.68
20–39 11.46 11.58 16.87 25.14 16.43 8.34
40–59 3.59 4.67 8.50 11.21 13.89 7.48
60+ 1.94 1.95 2.54 4.25 5.59 9.19

able A.2
allinga’s population structure.

Age group Participants Population (×103)

0 0 184
1–5 125 876
6–12 154 1265
13–19 152 1642
20–39 681 4857
40–59 360 3312
60+ 341 2477

Total 1813 14,614
20–39 34.50 34.86 50.75 75.66 49.45 25.08
40–59 15.83 20.61 37.52 49.45 61.26 32.99
60+ 11.47 11.50 14.96 25.08 32.99 54.23

niques described in [15,28] to the general age structure case of
interest.

Let us define �x = (x1, . . . , xn) to be a vector containing the num-
ber of individuals in each infected compartment. We have 4 such
compartments, L = x1, It = x2, Int = x3 and Ia = x4. The matrix F, defining
the rate of creation of new infected cases is then:

F ≡

⎛
⎜⎝

0 ˇ ˇ rˇˇ
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠

with a simple meaning: Latent cases (first row) are created (from
susceptible) with rate ˇ (rˇˇ) through interaction with It,nt (Ia).
Since these are the only ways in which the disease can spread
through a Susceptible population, all other entries in the matrix are
null. After infection, the disease progresses through several stages
as described by the matrix V = (vab) where element vab is the num-
ber of individuals leaving compartment a to compartment b, minus
the number of individuals following the opposite path. For seasonal
flu, we have:

V ≡

⎛
⎜⎝

� 0 0 0
− (1 − pa) pt� � 0 0
− (1 − pa) (1 − pt) � 0 � 0
−pa� 0 0 �

⎞
⎟⎠

Using these two matrices we can calculate the next generation
matrix,

N ≡ FV−1

that describes the complete epidemic process and whose interpre-
tation is relatively simple: F is the rate at which new infections
are created and V−1 is the average duration of each infected com-
partment. The basic reproductive ratio, R0 is finally given by the
maximum eigenvalue of this matrix that in a model without age
structure reads as

R0 = �max (N) ≡ ˇ

�
[rˇpa + (1 − pa)].

Adding age structure results in a proliferation of infected com-
partments. In the case of the Wallinga’s age grouping, we have 6
times as many infected compartments. Fortunately, the fact that we
do not consider aging implies that individuals never move between
compartments corresponding to different age groups, thus greatly
simplifying the analysis. We define the new vector �x† to be a con-
catenation of 6 vectors �x each corresponding to a different age
cohort. Mixing between the different groups results in a suscep-
tible individual becoming latent by interacting with an infectious
person from any other group. In matrix notation, and using the
previous definitions, the new infection matrix F† is given by:
F† = M × F,

where × represents the Kronecker product. After the initial infec-
tion, the disease progresses as before with each age group being
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solated from all others. The progression matrix V† is then:

† = I × V,

here I is the 6 × 6 identity matrix. The next generation matrix can
ow be written as:

† = M × FV−1

herefore, the new basic reproductive number can be written as a
unction of the previous one:

†
0 = R0 · �max (M) (A.1)

his formulation is completely generic and completely generaliz-
ble for any number of age groups with only a very small numerical
ffort. A specific value of R0 can be set by inverting this expression
nd calculate the appropriate value of ˇ(R0).

Before we can use this formulation in our global simulation, we
ust take into account the different demographics of each coun-

ry or census areas and their change in time. Using the definitions
bove, we can write:

Ia = ˇ
∑

b

mab

Na
SaIb ≡ ˇ

∑
b

cabSaIb (A.2)

o describe the increase in the number of people in compartment Ii
n a basic SI model. Defining the fraction of individuals in compart-

ent Ia as �Ia ≡ Ia/N, we rewrite this expression as:

�Ia = ˇ�Sa

∑
j

Cab�Ib

here Cab is the symmetric matrix defined above. Since this expres-
ion depends only on the relative fraction of individuals in each
ompartment and not on the details of how many people are actu-
lly in each compartment, we can safely conclude that Cab is the
atrix that must be kept constant for every population. We can

ow identify:

ab ≡ m†
ab

N†
a

N† ≡ C†
ab

r, in other words:

†
ab

≡ Cab
N†

a

N† (A.3)

s the matrix that we must use in Eq. (A.1) and that will differ from
ountry to country. Substituting in Eq. (A.2) we obtain:

Ia = ˇ
∑

b

Cab
SaIb
N

,

here N is the total population for the subpopulation considered
nd Cab is the same for every population. The resulting force of
nfection is then:

a = ˇ
∑

b

Cab
Ib
N

. (A.4)

uring the derivation of this expression, and for the sake of clarity,
e considered only a single population. The expression for the full

orce of infection including the mobility dynamics Eq. (A.4) can be

btained after the application of the prescription of Section 4. This
an be easily done by replacing every term of the form ˇiIi by

i

∑
b

CabIb
i . (A.5)
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