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a  b  s  t  r  a  c  t

MERS  coronavirus  cases  notified  in the Middle  East  region  since  the  identification  of  the  virus  in  2012
have  displayed  variations  in  time  and  across  geography.  Through  a combined  modelling  approach,  we
estimate  the  rates  of  generation  of cases  along  the  zoonotic  and  human-to-human  transmission  routes
and assess  their  spatiotemporal  heterogeneity.  We  consider  all cases  notified  to  WHO  from  March  2012  to
mid-September  2014.  We  use  a  stochastic  modelling  of the  time  series  of case  incidence  in  the  Middle  East
region to estimate  time-  and  space-dependent  zoonotic  and  human-to-human  transmission  parameters.
The model  also  accounts  for  possible  lack  of  identification  of  secondary  transmissions  among  notified
cases.  This  approach  is  combined  with  the  analysis  of imported  cases  out of  the  region  to  assess  the
rate  of  underreporting  of  cases.  Out  of  a  total  of  32  possible  models,  based  on  different  parameterisation
and  scenario  considered,  the  best-fit  model  is characterised  by  a large  heterogeneity  in time  and  across
space  for  both  zoonotic  and  human-to-human  transmission.  The  variation  in time  that  occurred  during
Spring  2014  led to a 17-fold  and  3-fold  increase  in  the  two transmissions,  respectively,  bringing  the
reproductive  rate  to values  above  1 during  that  period  for all  regions  under  study.  The  model  suggests
that  75% of MERS-CoV  cases  are secondary  cases  (human-to-human  transmission),  which  is substantially
higher  than  the 34%  of  reported  cases  with  an  epidemiological  link  to another  case.  Overall,  estimated

reporting  rate  is 0.26.  Our  findings  show  a higher  level  of  spatial  heterogeneity  in  zoonotic  transmission
compared  to  human-to-human,  highlighting  the  strong  environmental  component  of  the  epidemic.  Since
sporadic  introductions  are  predicted  to be  a small  proportion  of  notified  cases  and  are  responsible  for
triggering  secondary  transmissions,  a more  comprehensive  understanding  of  zoonotic  source  and  path
of transmission  could  be  critical  to  limit  the  epidemic  spread.

©  2015  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
. Introduction

The Middle East respiratory syndrome coronavirus (MERS-CoV)
as detected for the first time in 2012 in the Arabian Peninsula and

ince then it has been the source of global health concern (WHO).
he disease can be severe, it is characterised by sporadic emergence
f cases and associated clusters in a restricted geographical area, the
iddle East, but few cases also travelled internationally and were

iagnosed worldwide (ECDC). More recently it also led to a large

ocal outbreak in South Korea, following a case importation from
he Middle East region (WHO  and MERS-Cov).

∗ Corresponding author. Tel.: +33 144738436.
E-mail address: chiara.poletto@inserm.fr (C. Poletto).

ttp://dx.doi.org/10.1016/j.epidem.2015.12.001
755-4365/© 2015 The Authors. Published by Elsevier B.V. This is an open access article
.0/).
Infection control outbreak investigations and observational
studies have highlighted important aspects of the epidemiology
of the disease. Both zoonotic introductions and human-to-human
transmissions are responsible for new infections. Dromedary
camels have been found to be intermediary hosts for the virus and
may  represent the source for zoonotic infection (Muller et al., 2015;
Alagaili et al., 2014). Human-to-human transmission can occur fol-
lowing close and prolonged contacts and it has been identified
as the main mechanism responsible for the documented hospi-
tal outbreaks of Al-Hasa (Assiri et al., 2013) and Jeddah (Drosten
et al., 2015). Modelling studies highlighted the subcritical nature
of the epidemic (Chowell et al., 2014; Poletto et al., 2014; Breban

et al., 2013; Cauchemez et al., 2014; Majumder et al., 2014) and
few of them also characterised the rate of zoonotic transmission
(Poletto et al., 2014; Cauchemez et al., 2014). A population-based
serological investigation recently provided evidence for substantial
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of cases and a stochastic data-driven model for spatial diffusion of
the epidemic worldwide. A schematic representation of the analysis
is reported in Fig. 1. All parameters and variables are listed and
described in Table 1.

Table 1
Variables and corresponding descriptions.

Variable Description

nr(t) Total number of cases in region r at time t
Dr(t) Number of notified cases in region r at time t
�  Reporting rate, Dr(t) = �nr(t)
Nr Population of region r
dr

s (t) Number of secondary transmissions among all notified cases
Dr(t) in region r at time t

sr(t) Number of notified secondary cases in region r at time t
pr

sp(t) Rate of generation of sporadic cases in region r at time t
qr

sp(t) Rate of generation of sporadic cases in region r at time t
obtained from notified cases, qr

sp(t) = �pr
sp(t)

Rr(t) Reproduction ratio for human-to-human transmission in
region r at time t

˛r Geographical variation of the rate of generation of sporadic
cases in region r, pr

sp(t) = ˛r psp(t)
ˇ Geographical variation of the reproduction ratio for
 C. Poletto et al. / E

nder-detection of cases possibly due to sub-clinical forms of the
isease (Muller et al., 2015).

Despite these advances, there are still many gaps in knowledge
egarding MERS epidemiology and ecology. Geographical variation
n the epidemic has rarely been considered in these studies, even
hough epidemic data show a clear spatial heterogeneity across
ountries in the Middle East region and across provinces of Saudi
rabia. Occasional sparks in activity have been observed as well.

 particularly large increase in the number of cases was  reported
uring Spring 2014, with a maximum of 133 weekly cases at the
nd of April (epidemiological week 2014-17), confined mainly in
he provinces of Riyadh and Makkah in Saudi Arabia (WHO).

The observed strong spatial and temporal heterogeneities cha-
acterising a persistent yet subcritical epidemic pose a set of
hallenges for the comprehensive understanding of MERS-CoV cir-
ulation in the Middle East region. Whether this behaviour results
rom a combination of different transmission modes or seasonal
ffects or other mechanisms is still unclear. Here we aim to quantify
he spreading potential associated to zoonotic and human-to-
uman transmission routes and characterise their temporal and
eographical variation, to uncover possible variations in the epi-
emiology of the disease. We  propose a combined approach, akin
o the one introduced in (Poletto et al., 2014), based on the joint
nalysis of imported cases out of the Middle East region and inci-
ence of cases within the region. By maximising the use of available

nformation the model is able to estimate the transmission param-
ters for each route and their spatiotemporal variation, account for
nidentified human-to-human transmission among detected case,
nd assess the rate of case detection.

. Methods

.1. Data

Data consisted of all cases notified to WHO  with onset between
he beginning of the epidemic in March 2012 (specifically week
012-12) and mid-September 2014 (i.e. week 2014-38), retrieved
s of March 2015 from (Rambaut, 2013). Cases arising in the Mid-
le East region (Saudi Arabia, Qatar, Oman, Kuwait, Jordan, United
rab Emirates, and Yemen) and cases imported to Western Euro-
ean countries and North America were analysed separately. The
ataset used for the analysis did not include 113 cases occurring
etween May  2013 and May  2014 identified through retrospective
eview and reported by WHO  on June 26 (MERS-Cov) for which
nformation of neither date of onset or date of hospitalisation

as available. Completeness of the dataset used in both tempo-
al and geographical information is addressed in Section 1 of the
upporting Information.

In the Middle East region, cases were grouped according to loca-
ion at the province level in Saudi Arabia (11 over the 13 provinces
xperience cases and were considered in the analysis) and at the
ountry level otherwise, finally yielding 17 regions (11 provinces
n Saudi Arabia, plus the remaining 6 countries of the Middle East
egion, i.e. Qatar, Oman, Kuwait, Jordan, United Arab Emirates, and
emen). For each region we computed the epidemic curve using
ates of onset. As this date was missing in approximately half the
ases, imputation was used based on hospitalisation or notification
ates as explained in the next subsection.

A proportion of 34% of cases reported to WHO  were described as
secondary” when they were epidemiologically linked to another
ase. Accordingly, we refer in the following to cases arising from

uman-to-human transmission as “secondary cases” and to all oth-
rs as “primary cases”, i.e. of zoonotic origin. Lack of information
n the identification of secondary transmission is also considered
n the model.
ics 15 (2016) 1–9

We  finally considered the imported cases in Western Europe
and North America (n = 9), as these regions have set up high sen-
sitivity surveillance systems to detect importations. We  included
Austria, Belgium, Denmark, Finland, France, Germany, Iceland,
Ireland, Italy, Liechtenstein, Luxemburg, the Netherlands, Norway,
Portugal, Spain, Sweden, Switzerland, the United Kingdom, Greece,
Canada and the United States as possible destinations out of the
Middle East. In this area, 1 case with travel history to Middle East
was notified in France, Germany, Greece, Italy and the United King-
dom and 2 cases in the Netherlands and the United States over the
period under study.

2.2. Reconstruction of incidence time-series

Incidence of onset time-series in the 17 Middle East regions
were reconstructed as follows. If hospitalisation date th was avail-
able, the onset date was  imputed at th − �th where �th was
sampled from the distribution of time from onset to hospitalisa-
tion, determined from other cases hospitalized in the same period
(i.e. [th − 30 days, th + 30 days]); if only the notification date tr was
known, the onset date was imputed at tr − �tr where �tr was
sampled from the distribution of time from onset to notification,
determined from other cases notified in the same period, as before.
Cumulative distributions from onset to hospitalisation and from
onset to notification are reported in the Supplementary Informa-
tion. This procedure was  repeated to yield 20 epidemic curves:
there was an average 707 cases (range 704–712 cases depending on
imputation) with onset in the period considered for analysis. The
overall epidemic curve profile was  little affected by imputation (see
Supplementary Information). Overall, the five regions reporting the
most cases were Makkah (245 cases), Riyadh (223 cases), Eastern
Province (68), United Arabia Emirates (65) and Al Medinah (42).

2.3. Model

We  used a two-step approach to estimate the reporting rate �,
the rate of sporadic generation of cases from non-human source
pr

sp(t) and the reproduction ratio Rr(t) as a function of time t in
each region r. The first step included modelling the incidence time
series in the Middle East region, the second step used importation
r

human-to-human transmission in region r, Rr(t) = ˇrR(t)
qsp,1, qsp,2 Baseline level and peak level of the spline function assumed to

model qr
sp(t)

R1, R2, R3 Three levels of the stepwise function assumed to model Rr(t)
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Fig. 1. Model A: Scheme of the 2-step approach. Step 1 is based on the fit of 20 imputed epidemic curves for each of the 17 regions in the Middle East (only one curve is displayed
for  the sake of visualisation corresponding to the region experiencing the largest number of cases). It allows model selection and estimation of Rr(t) and qr

sp(t) = �pr
sp(t). Step

2  is based on the fit of imported cases in Western Europe and North America and allows estimating �. B: Scheme of the functional forms assumed for R(t) and qsp(t) when
t the m
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emporal heterogeneity (either for one of the parameters or both) is considered in 

ielding the 32 models for exploration.

First step: Cases were grouped by week, corresponding to the
ean generation time (Assiri et al., 2013; Poletto et al., 2014).

n each region r, incidence was modelled as the superposition
f sporadic cases at a region-specific time-varying weekly rate
r
sp(t) and of cases caused by human-to-human transmission with
egion-specific time-varying reproduction ratio Rr(t). More pre-
isely, we assumed pr

sp(t) = ˛rpsp(t) and Rr(t) = ˇrR(t), where ˛r and
r are region specific rescaling factors of sporadic generation of
ases and reproductive ratio, respectively. We  then expressed the
xpected value of total number of cases nr(t) in region r at time

 as E(nr(t)) = ˛rNrpsp(t) + ˇrR(t − 1)nr(t − 1) where Nr is the pop-
lation of the region. As a sensitivity analysis, we also explored

 model where the number of cases depended on incidence in
he three weeks before (i.e. generation time distribution spanning

 weeks).
We  assumed a constant and uniform reporting rate �, so that

he number of notified cases Dr(t) in region r at time t was
r(t) = �nr(t). We  further assumed that Dr(t) was  Poisson dis-

ributed. The observed rate of generation of sporadic cases based
n notifications is then defined as qr

sp(t) = �pr
sp(t).

As indicated in the Data section, a number sr(t) of cases among
he Dr(t), were identified as secondary. We  defined two  scenar-
os for interpreting this information. In the complete information on
ransmissions scenario, sr(t) was assumed to be equal to the actual
umber of secondary transmissions among notified cases dr

s(t),
r(t) = dr

s(t); in the partial information on transmissions scenario,
r(t) was taken as a lower bound of this number: we thus assumed
hat some cases not described as secondary could nevertheless
ave resulted from unidentified human-to-human transmission,

.e. ds(t) ≥ sr(t).
In the complete information on transmissions scenario, we com-

uted in each region the probability of having Dr(t) notified cases,

mong which sr(t) human-to-human transmissions: P(dr

sp(t) =
r(t) − sr(t)&ds(t) = sr(t)) where dsp(t) are the notified cases arising

rom sporadic generation. Conditional on Dr(t), assuming the same
eporting rate � for secondary and primary cases, the distribution
odel. Parameters qsp,1, qsp,2, R1, R2, R3 are estimated. C: Combination of parameters

of dr
s(t) was binomial with probability ˇrR(t − 1)Dr(t − 1)/E(Dr(t)),

so that

P(dr
sp(t) = Dr(t) − sr(t)&ds(t) = sr(t))

= e−E(Dr (t)) (ˇrR(t − 1)Dr(t − 1))sr (t)

sr(t)!
(Nr˛rqsp(t))Dr (t)−sr (t)

(Dr(t) − sr(t))!
.

For the partial information on transmissions scenario, we com-
puted

P(dr
s(t) = D(t) − sr(t)&dsp(t) ≥ sr(t))

= e−E(Dr (t)) (�ˇrR(t − 1)Dr(t − 1))sr (t)

sr(t)!

×
(

(1 − �)ˇrR(t − 1)Dr(t − 1) + Nr˛rqsp(t)
)Dr (t)−sr (t)

(Dr(t) − sr(t))!

with � the probability that a case generated by human-to-human
transmission was  correctly described as secondary. In both cases,
the final log-likelihood was  obtained as a sum over all weeks and
regions.

The rescaling factors ˛r and ˇr, assumed to model the presence
of spatial heterogeneity in the zoonotic generation of cases and
secondary transmissions, respectively, are described as random
parameters log-normally distributed. The absence of geographical
variation was  also considered, where these parameters were set to
1.

For temporal changes, we modelled qsp(t) as a linear spline
and R(t) as a stepwise function (see Fig. 1B) with nodes/jumps at
weeks 2012-12, 2014-13, 2014-17, 2014-21, 2014-38 to capture
the largest epidemic wave occurring during Spring 2014. qsp(t) was

therefore described by 2 parameters (namely qsp,1 and qsp,2) and
R(t) by 3 parameters (R1, R2, R3). In the absence of temporal vari-
ation, these quantities were constant in time, i.e. qsp(t) = qsp,1 and
R(t) = R1.
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Table 2
DIC differences for the 16 models tested in the scenario partial information on
transmissions. Differences were averaged over 20 imputed epidemics.

Temporal variation Geographical variation

None R psp Both psp and R

None 329 295 136 121
p 308 279 54 45

the second part of the Spring wave (from 2014-17 to 2014-21).
Zoonotic transmission is characterised by larger geographical

variations with respect to human-to-human transmission, as con-
firmed by the coefficient of variations associated to ˛r and ˇr

Table 3
Parameter estimates obtained from the best fit.

Parameter estimate

qsp,1 0.026 [0.011–0.056] × 10−6

q 0.45 [0.15–1.07] × 10−6
 C. Poletto et al. / E

Considering systematically all parameterisations (possible pres-
nce of temporal and/or geographical variation in psp(t) and R(t))
nd scenarios (complete and partial information on transmissions)
ielded a total of 32 model formulations (Fig. 1C), and each model
as fitted to the 20 imputed epidemic curves. We  explored the
osterior distribution of all parameters of interest using Gibbs
ampling (100,000 iterations, 2 chains). Prior distributions for all
arameters are reported in the Supplementary Information. We
sed Deviance Information Criterion (DIC) to identify the best-
tting model, averaging DIC differences over the 20 epidemic
urves, and reported posterior means and credible intervals for
arameters.

For sensitivity analysis, we shifted the peak of psp(t) by one
eek, allowed for a 10-week-long change in R(t) and psp(t), for a

ingle step increase in R(t) of varying duration, and for dispersion
n the generation time duration (see Supplementary Information
or details).

Second step: Similarly to (Poletto et al., 2014), we  used a global
pidemic and mobility model (GLEAM) (Balcan et al., 2009a,b) to fit
he number of imported cases in countries out of the Middle East
Fig. 1b).

GLEAM is based on a spatially structured meta-population
pproach comprising 3362 subpopulations in 220 countries in
he world coupled through mobility connections. The model is
nformed with high-resolution demographic data for 6 billion indi-
iduals and multi-scale mobility data including the full air traffic
atabase from the International Air Transport Association (IATA)
IATA) and short-range ground mobility obtained from national
ommuting data (Balcan et al., 2009b). We  modelled MERS-CoV
nfection dynamics within each subpopulation as the combina-
ion of generation of cases from sporadic infections, assumed to be

 Poisson process, and a SEIR compartmentalization (susceptible,
xposed, infectious, recovered individuals) with generation time of
.6 days and latency period of 5.2 days (Assiri et al., 2013; Poletto
t al., 2014). Transmissibility is parameterised by setting qr

sp(t) and
r(t), to the estimated values from the best-fit model selected in
tep 1.

The detection rate � was the free parameter of the model.
or each value of �, GLEAM allowed the generation of stochastic
umerical realizations of the MERS-CoV outbreak simulating the

ocal epidemic in the source region and international dissemina-
ion events through mobility processes. We  thus generated with

 Monte Carlo procedure the probability distribution Pi(ni) of the
umber ni of imported MERS-CoV cases in country i out of the seed
egion. Being all independent importation events, we  can define a

ikelihood function Limp

(
�;

{
n∗

j

})
=

∏
j

Pj

(
n∗

j

)
, where n∗

j
is the

mpirically observed number of imported cases per country.

. Results

.1. Model selection

Altogether, models in the partial information on transmissions
cenario provided a much better fit than the ones of the complete
nformation on transmissions case, suggesting that more trans-

issions occurred than actually reported (see Supplementary
nformation for all DIC values).

Table 2 summarises the DIC differences for the 16 models cor-
esponding to the partial information on transmissions scenario. The
est model included heterogeneity in time and space for both the

poradic generation of cases and the reproductive ratio. The DIC
ifferences show that all the other models fit substantially worse.
s expected, the models with no temporal heterogeneity in either
r
sp(t) or Rr(t) had the largest DIC showing that the hypothesis of
sp

R 249 219 51 41
Both psp and R 232 206 14 0

constant transmission parameters failed to properly explain the
observed incidence profile. Assuming temporal variation in either
transmission mode already improved the fit, with a time varying
reproduction ratio providing the largest improvement. For spa-
tial heterogeneity, allowing the zoonotic transmission to change
between regions was  always favoured. The model providing the
closest DIC to the best-fit one included temporal change in the rate
of sporadic cases and in Rr(t), with spatial heterogeneity only for
the zoonotic component.

This conclusion was robust to changes in the models (see sensi-
tivity analysis in the Supplementary Information).

3.2. Spatial and temporal heterogeneity in the transmission
modes

Table 3 shows the estimated parameters of the functions R(t)
and qsp(t), along with the reporting rate �, estimated for the best-
fit model. The bivariate posterior distributions of the parameters
qsp,1, qsp,2 R1, R2, R3 are shown in the Supplementary Information.
We predicted � equal to 0.26 [0.16–0.52] corresponding to an aver-
age underreporting ratio of 3.8. For each region the rate of sporadic
generation of cases and the reproductive ratio can be computed by
multiplying the temporal rescaling functions by the factors �−1˛r

and ˇr, respectively (estimates for ˛r and ˇr are provided in the
Supplementary Information). The bar chart of Fig. 2 presents an
overview of the results by focusing on the minimum and the max-
imum values of the parameters in time for each region, namely
pr

sp,1 = �−1˛rqsp,1 and pr
sp,2 = �−1˛rqsp,2 for the rate of zoonotic

transmission, and Rr
1 = ˇrR1 and Rr

3 = ˇrR3 for the reproductive
ratio. During the epidemic peak of Spring 2014 the generation of
sporadic cases was estimated to increase of a factor 17.4. More
in detail, for the period of low epidemic activity we  predicted a
weekly number of sporadic cases on the whole region (including
undetected cases) equal to 6.22 [0.56–43.1] that increases up to
a maximum of 108.0 [8.0–734.0] during Spring 2014. The mean
reproductive ratio estimated for the period of low activity was
below one in all regions, ranging from 0.31 [0.06–0.60] to 0.70
[0.50–0.92]. During the four weeks between 2014-13 and 2014-
17, it was predicted to increase by a factor 3.3, raising above one
for all regions (Fig. 2). It was  found to decrease to values below the
epidemic threshold and slightly higher than the base values during
sp,2

R1 0.40 [0.22–0.57]
R2 1.32 [0.72–2.0]
R3 0.60 [0.32–0.85]
�  0.26 [0.16–0.52]
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Fig. 2. Rate of zoonotic case introduction and reproductive ratio in Middle East
regions.  Baseline value (minimum, light colour) and Spring 2014 value (maximum,
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ark colour) are shown in blue for the rate of zoonotic transmission in each region,
r
sp,1 = �−1˛r qsp,1 and pr

sp,2 = �−1˛r qsp,2, and in red for the reproductive ratio Rr
1 =

r R1 and Rr
3 = ˇr R3. The dashed red line indicates the threshold value R = 1.

qual to 0.99 and 0.20 respectively. The largest reproductive ratios
ere obtained for the Eastern Region (2.3 [1.4–3.7] during the
aximum epidemic activity), Makkah (1.8 [1.3–2.4]), Al Medinah

1.7 [1.0–2.6]) and Ryiadh (1.6 [1.1–2.2]), while the smallest val-
es of the parameter were obtained for Al Jawf (1.0 [0.2–2.1]),
man (1.0 [0.2, 2.1]). The probability of zoonotic transmission
as the highest in the provinces of Riyadh (pr

sp,2 equal to 9.5

3.5–18.3] × 10–6), Eastern Region (4.7 [2.0–8.4] × 10–6) and Qatar
4.1 [1.3–8.5] × 10–6), and the smallest for Al Bahah (0.34 [0.06,
.15] × 10–6) and Yemen (0.05 [0.01, 0.14] × 10–6).

Results of the sensitivity analysis showed that the posterior
istributions of the parameters were little affected by arbitrary
nd simplifying modelling choices (date of the peak, width of
he increase, span of the generation time distribution – see
upplementary Information).

.3. Assessment of the epidemic situation

Fig. 3 shows the predicted number of cases aggregated over the
hole period broken down by type of transmission, obtained for the

est-fit model. Results show a larger fraction of secondary cases out
f the total number than reported. In WHO  reports, secondary cases
mount to 34% of all reported cases, with regional levels ranging
etween 0% and 57%. According to model predictions, this propor-
ion was 75%, with values in the most affected regions equal to 89%
n Makkah (vs. the reported 28%), 76% in Eastern Region (vs. 50%),
5% in Al Medinah (vs. 36%), 74% in UAE (vs. 54%) and 69% in Riyadh
vs. 26%). Both the total number of cases and the ratio of secondary

o primary cases were geographically heterogeneous.

Fig. 4 shows predicted time series of incidence and propor-
ion of human-to-human transmission cases for the Middle East
egion as a whole and for the five regions with the most intense
ics 15 (2016) 1–9 5

epidemic activity. Periods with the highest levels of incidence were
characterised by an increase in the proportion of secondary cases
above 50%, indicating an increase in human-to-human transmis-
sion above the epidemic threshold. In particular Spring 2014 saw
an overall increase in the proportion of human-to-human trans-
mission cases from 52% to 74%. At the regional level the incidence
patterns were diverse. Peaks in proportion of secondary cases with
values above 95% were reached in Makkah (during the Spring 2014
wave) Al Medinah (in September 2013 and May  2014) and Eastern
Province. The province of Riyadh, despite a large incidence, never
saw a proportion of transmission above 80%.

4. Discussion

We presented here an assessment of the relative role of human-
to-human vs. zoonotic transmission on the dynamics of MERS-CoV
in the Middle East peninsula accounting for temporal and geo-
graphical variability. We designed a combined modelling approach
in order to make optimal use of the available information and
provide a comprehensive description of the epidemic. The com-
parison among a wide set of models highlighted the following
characteristics of the MERS-CoV epidemiology.

First, many human-to-human transmission events likely went
unidentified, as shown by the better fit of the set of scenarios
considering partial information on transmissions compared with
the ones assuming complete information on transmissions. Indeed,
human-to-human transmission was reported in 34% of the cases,
but the best-fit model predicted that this proportion was up to 75%.
Not accounting for the imperfect information on secondary cases
led to under-estimating human-to-human transmission. Interest-
ingly, this larger proportion of human-to-human transmission
predicted by the best-fit model is consistent with the fact that only
few contacts between known sources of zoonotic transmission,
such as dromedary camels, and humans have been reported among
MERS-CoV patients (Gossner et al., 2014) and often no such contacts
were found for infections reported as primary. Our results show
that a large part of human-to-human transmission may  have went
unidentified in the data, as previously suggested (Drosten et al.,
2015). The proportion of unidentified human-to-human transmis-
sion was  the largest when epidemic activity increased, which could
be explained by the more difficult assessment of the origin of cases
in presence of a large number of cases. Indeed, while in the reported
data the proportion of secondary cases did not change substantially
during the Spring 2014 period compared to the rest of the time (34%
vs. 33%), our model showed that this percentage increased from
52% to 74% in Spring 2014. This sharp increase has previously been
described in an observational study and attributed mainly to noso-
comial transmissions (Drosten et al., 2015). The predicted value in
the low activity period (52%) is similar to the value reported for
the period between September 2012 and October 2013 (59%) (The
WHO  MERS-CoV Research Group, 2013).

Our analysis provided further insight in the Spring 2014
increase. We found that this epidemic wave required a substan-
tial increase in both the rate of introduction of the virus and
human-to-human transmission. We  obtained indeed a rise of a
factor 17 in the rate of sporadic introductions, and a three times
increase in the reproductive ratio going from values below the epi-
demic threshold (in accordance with previous studies (Poletto et al.,
2014; Breban et al., 2013; Cauchemez et al., 2014)) to values above
such threshold for all the regions. More frequent sporadic intro-
ductions could be related to an increase in the virus circulation
in the zoonotic source. A recent study (Wernery et al., 2015) on

MERS-CoV spread among dromedary camels shows that the virus
produces acute epidemics in calves, often born in Spring. Such out-
breaks may  cause an increase in the number of primary cases and
increased opportunities for subsequent transmission, multiplying
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ig. 3. Cases of zoonotic origin and from human-to-human transmission in eac
ellow  portions of the circles are proportional to the number of human-to-human
egions  experiencing the most cases.

he number of admissions of MERS-CoV cases to hospitals with the
ossibility of further triggering hospital outbreaks as previously
eported (Drosten et al., 2015; Saad et al., 2014; Oboho et al., 2015).
espite a suggestion that the highly seasonal breeding cycle of
amels may  drive MERS-CoV infections in humans (Wernery et al.,
015), we did not find evidence to explain a seasonal pattern on
uman-to-human transmission. We  tested seasonal patterns for
sp(t) and R(t) to examine if there had been a rise in the number of
ases during Spring 2013. Overall, the model fits were not improved
see Supplementary Information). However, this does not rule out
hat such a seasonal pattern may  become more apparent as the
umber of cases increases. Sensitivity analysis on five alternative
odels showed that posterior distribution of parameters were little

ffected by the model details.
Model selection shows that adding geographical heterogene-

ty in R(t) does not improve substantially the fit, meaning that
eographical variation in transmission settings and human-to-
uman contact behaviour does not play a critical role in the
ERS-CoV spreading dynamics within the Arabian Peninsula. On

he other hand, zoonotic transmission presented a highest level

f heterogeneity. This result points out the strong environmental
omponent of the infection. Such variations indeed should be
elated to a spatially heterogeneous force of infection induced by
he zoonotic source. Recent studies provided information on spatial
on during the whole period under study. For each region, the areas of the red and
missions and zoonotic cases respectively. The actual counts are shown for the five

density of camels over the Arabian Peninsula (Gossner et al., 2014)
and the prevalence of MERS-CoV infection among the animals
(Alagaili et al., 2014). Besides these two  ingredients, however, the
force of infection from camels to human is also determined by
human-to-camel contact behaviour. Information on farming prac-
tices and their geographical variation would be critical to explain
the observed pattern and to inform risk assessment analysis.

The five regions with the highest epidemic activity presented
different behaviours. The two  largest outbreaks occurred in Makkah
and Riyadh. Makkah showed the most intense human-to-human
transmission, while the epidemic in Riyadh was characterised by
a large number of virus introductions. These findings are consis-
tent with the phylogenetic analysis conducted by (Drosten et al.,
2015). Furthermore in accordance with the study in (Majumder
et al., 2014) we  recovered a higher reproductive ratio in Makkah
than in Riyadh (Rr

3 equal to 1.9 against 1.6). The epidemic activity in
both Al Medinah and UAE shows high transmission and low intro-
ductions. Eventually the incidence profile in the Eastern Province
is more scattered all over the study period (Assiri et al., 2013).

Another important finding is the confirmation that underre-

porting in the region is common, as previously reported in other
modelling studies (Poletto et al., 2014; Cauchemez et al., 2014),
consistently with surveillance works (Saad et al., 2014; Oboho
et al., 2015; Memish et al., 2013; Al-Tawfiq and Memish, 2014)
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Fig. 4. Predicted time series of incidence and proportion of secondary cases for the whole Middle East and the five regions with the most cases. For each region the
average number of cases is displayed with the grey-scale colour-map, while values for the proportion of secondary cases are colour-coded (white, yellow orange and red)
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ccording to the legend. Average number of cumulative cases predicted by the mo
ncreased activity assumed by the model.

nd a recent nationwide seroprevalence investigation in Saudi Ara-
ia (Muller et al., 2015). Here, we found that the reported cases
mounted to between 16% and 52% of all cases, so that the total epi-
emic size in the Middle East region as of now could range between
2500 and ∼8000 cases. Cases could go undetected because they
re subclinical (Muller et al., 2015; Saad et al., 2014; Oboho et al.,
015; Memish et al., 2013; Al-Tawfiq and Memish, 2014). Assuming
ild cases less transmissible then symptomatic ones would have

ed to a larger estimate for the number of cases, an aspect that was
ot considered in our model because of lack of information. Current

edical knowledge of the disease does not allow a more detailed
odelling of the infection natural history and further epidemiolog-

cal investigation is needed to assess such level of heterogeneity in
ransmission.
 indicated on the top of each colormap. Dashed lines indicate the time periods for

Our modelling approach introduces a seamless transition
between analysing cluster of cases and epidemic curves. Most
published analyses of the MERS-CoV epidemics focused on the
characteristics of case cluster sizes to inform human-to-human
transmission (Poletto et al., 2014; Breban et al., 2013; Cauchemez
et al., 2014), and would not be adequate to analyse sustained
human-to-human transmission. A more recent analysis used tra-
jectory matching based on a deterministic SEIR model (Chowell
et al., 2014) that may  result in larger inaccuracies for small counts.
To overcome these two limitations, we formulated a stochastic

birth and death process combining the occurrence of sporadic
cases and their offsprings, extending methods for the estimation
of reproduction numbers based on secondary cases only to include
also sporadic cases (Wallinga and Teunis, 2004). To simplify the
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nalysis, we considered cases over intervals of the same duration
s the mean generation time, but extension to arbitrary generation
ime distribution is straightforward. We  also assumed Poisson vari-
bility in incidence, but allowed for over-dispersion by introducing
egion specific parameters.

Our study is affected by a set of limitations. First, the detection
atio � was assumed to be geographically uniform. This may  be
nrealistic, especially across different countries due to the different
urveillance systems. We  believe, however, that the assumption
f uniform detection rate across the provinces of Saudi Arabia is
ustified by the national surveillance system and consequently the
eographical signature predicted by the model within the region is
ikely to be genuine. We  assumed � to be also constant in time. Such
ssumption was made in other studies referring to the period before
pring 2014 (Chowell et al., 2014); this was justified by the fact that
ro-active surveillance was  put in place during that period (Memish
t al., 2014). The sharp increase in cases during Spring 2014 may
ave caused an overload in surveillance systems and a decrease

n the detection probability. If this is the case, the increase in the
oonotic transmission during the period could be higher than the
esults provided here. It is important to note, however, that given
he model assumptions such bias does not affect the estimated ratio
etween primary and secondary cases nor the reproductive ratio.

Second, our model assumes transmission probability to be the
ame across different settings (e.g. households, hospitals). We  thus
rovide unstratified estimates of the reproductive ratio. Current
ata do not allow a more detailed modelling of the epidemic spread

n different settings.
Also, we do not account for the occurrence of super-spreading

vents. Heterogeneity in transmission was addressed by analysing
luster distribution in Middle East (Kucharski and Althaus, 2015)
nd local transmission in countries out of the Middle East region
ollowing case importation (Nishiura et al., 2015). Results indicate
ubstantial potential for super-spreading that may  have con-
ributed to the case insurgence during the Spring 2014 wave.

Eventually, the study restricts to the Middle East region and
xcludes contiguous countries like Lebanon and Iran, where MERS-
oV cases were detected. This was motivated by the fact that the
rabian Peninsula experienced the great majority of cases and was
lso the source of importation of cases at the global level (ECDC).
hus the territory represents the focus of major global health con-
ern.

In conclusion, we introduced a new modelling approach appli-
able to a zoonotic disease in a subcritical/critical spreading regime
hat is able to disentangle the relative role of the different trans-

ission routes. Applied to MERS-CoV, the model showed that
uman-to-human transmission is more frequent than expected
nd high geographical heterogeneity and temporal variation char-
cterise the zoonotic insurgence of cases with bursts that have
he potential to trigger outbreaks with intense human-to-human
ransmission. As such, priority should be given to the control of the
oonotic transmission with a better assessment of the mechanisms
t the origin of the observed variation in the generation of cases.
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